Nuggets of Pseudorandomness
Cynthia Dwork, Omer Reingold (MSR-SVC, {dwork, omreing}@microsoft.com)

1. Cryptography: Good Pseudorandom Generators are Crucial
 - With them, we have one-time pad (and more):
 - short key $K_s = 110$
 - derived key $K = 01101011$
 - Without, keys are bad, algorithms are worthless (theoretical & practical)

2. Data Structures & Hash Functions
 - Linear Probing:
 - If F is random then insertion time and query time are $O(1)$ (in expectation).
 - But where do you store a random function?!? Derandomize!
 - Heuristic: use SHA1, MD4, ...
 - Recently (2007): 5-wise independent functions are sufficient*
 - Similar considerations all over: bloom filters, cuckoo hashing, bit-vectors, ...

3. Weak Sources & Randomness Extractors
 - Available random bits are biased and correlated
 - Von Neumann sources:
 - $b_1 b_2 \ldots b_i \ldots$ are i.i.d. 0/1 variables and $b_i = 1$ with some probability $p < 1$ then translate
 - 01 \rightarrow 1
 - 10 \rightarrow 0
 - Randomness Extractors produce randomness from general weak sources, many other applications

4. Algorithms: Can Randomness Save Time or Memory?
 - Conjecture - No* (*moderate overheads may still apply)
 - Examples of derandomization:
 - Primality Testing in Polynomial Time
 - Graph Connectivity logarithmic Memory
 - Holdouts: Identity testing, approximation algorithms, ...

5. Expander Graphs
 - Sparse Graphs that are highly connected:
 - $|S| \leq N/10$
 - $|\Gamma(S)| \geq \frac{1}{2} D |S|$
 - Some useful properties:
 - Random walk rapidly mixing
 - Most outgoing edges are “unique” (great for routing)
 - Very fault tolerant
 - Many applications: networking and sorting networks, cryptography, data structures, complexity & proof theory, ...

6. Expander Codes
 - Minimum distance $\geq K$
 - Constant rate and relative distance (can be made very good)
 - Simple Decoding Algorithm in Linear Time & log n parallel phases