CS154, Lecture 10: Rice’s Theorem, Oracle Machines
Moral:
Analyzing Programs is Really, Really Hard

But can we more easily tell when some “program analysis” problem is undecidable?
Problem 1 Undecidable
\{(M, w) \mid M \text{ is a TM that on input } w, \text{ tries to move its head past the left end of the input}\}

Problem 2 Decidable
\{(M, w) \mid M \text{ is a TM that on input } w, \text{ moves its head left at least once, at some point}\}
Problem 1 Undecidable

L’ = \{ (M, w) \mid M \text{ is a TM that on input } w, \text{ tries to move its head past the left end of the input } \}

Proof: Reduce A_{TM} to L’

On input (M, w), make a TM N that shifts w over one cell, marks a special symbol $\$$ on the leftmost cell, then simulates $M(w)$ on the tape.
If M’s head moves to the cell with $\$$ but has not yet accepted, N moves the head back to the right.
If M accepts, N tries to move its head past the $\$$.

(M, w) is in A_{TM} if and only if (N, w) is in L’
Problem 2 Decidable

\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ moves its head left at least once, at some point} \}

On input \((M, w)\), run \(M\) on \(w\) for
\(|Q| + |w| + 1\) steps,
where \(|Q| = \text{number of states of } M\).

Accept If \(M\)'s head moved left at all
Reject Otherwise

(Why does this work?)
Problem 3

REVERSE = \{ M | M is a TM with the property: for all w, M(w) accepts \iff M(w^R) accepts \}.

Decidable or not?

REVERSE is undecidable.
Rice’s Theorem

Let \(P : \{\text{Turing Machines}\} \rightarrow \{0,1\} \).
(Think of 0=false, 1=true) Suppose \(P \) satisfies:

1. (Nontrivial) There are TMs \(M_{\text{YES}} \) and \(M_{\text{NO}} \) where \(P(M_{\text{YES}}) = 1 \) and \(P(M_{\text{NO}}) = 0 \)

2. (Semantic) For all TMs \(M_1 \) and \(M_2 \), If \(L(M_1) = L(M_2) \) then \(P(M_1) = P(M_2) \)

Then, \(L = \{M \mid P(M) = 1\} \) is undecidable.

A Huge Hammer for Undecidability!
Some Examples and Non-Examples

Semantic Properties $P(M)$
- M accepts 0
- for all w, $M(w)$ accepts iff $M(w^R)$ accepts
- $L(M) = \{0\}$
- $L(M)$ is empty
- $L(M) = \Sigma^*$
- M accepts 154 strings

Not Semantic!
- M halts and rejects 0
- M tries to move its head off the left end of the tape, on input 0
- M never moves its head left on input 0
- M has exactly 154 states
- M halts on all inputs

$L = \{ M \mid P(M) \text{ is true} \}$ is undecidable

There are M_1 and M_2 such that $L(M_1) = L(M_2)$ and $P(M_1) \neq P(M_2)$
Rice’s Theorem: If P is nontrivial and semantic, then $L = \{M \mid P(M) = 1\}$ is undecidable.

Proof: Either reduce A_{TM} or $\neg A_{TM}$ to the language L
Define M_\emptyset to be a TM such that $L(M_\emptyset) = \emptyset$

Case 1: $P(M_\emptyset) = 0$

Since P is nontrivial, there’s M_{YES} such that $P(M_{YES}) = 1$

Reduction from A_{TM} to L
On input (M,w), output:
“$M_w(x) := \text{If } ((M \text{ accepts } w) \& (M_{YES} \text{ accepts } x)) \text{ then ACCEPT, else REJECT}$”

If M accepts w, then $L(M_w) = L(M_{YES})$
Since $P(M_{YES}) = 1$, we have $P(M_w) = 1$ and $M_w \in L$

If M does not accept w, then $L(M_w) = L(M_\emptyset) = \emptyset$
Since $P(M_\emptyset) = 0$, we have $M_w \notin L$
Rice’s Theorem: If P is nontrivial and semantic, then $L = \{M \mid P(M) = 1\}$ is undecidable.

Proof: Either reduce A_{TM} or $\neg A_{TM}$ to the language L

Define M_\emptyset to be a TM such that $L(M_\emptyset) = \emptyset$

Case 2: $P(M_\emptyset) = 1$

Since P is nontrivial, there’s M_{NO} such that $P(M_{NO}) = 0$

Reduction from $\neg A_{TM}$ to L

On input (M, w), output:

“$M_w(x) := \text{If } ((M \text{ accepts } w) \& (M_{NO} \text{ accepts } x)) \text{ then ACCEPT, else REJECT}”$

If M does not accept w, then $L(M_w) = L(M_\emptyset) = \emptyset$ Since $P(M_\emptyset) = 1$, we have $M_w \in L$

If M accepts w, then $L(M_w) = L(M_{NO})$

Since $P(M_{NO}) = 0$, we have $M_w \notin L$
The Regularity Problem for Turing Machines

\[\text{REGULAR}_{\text{TM}} = \{ M \mid M \text{ is a TM and } L(M) \text{ is regular} \} \]

Given a program, is it equivalent to some DFA?

Theorem: \text{REGULAR}_{\text{TM}} \text{ is not recognizable}

Proof: Use Rice’s Theorem!

\(P(M) := \text{"L(M) is regular"} \) is nontrivial:
- there’s an \(M_{\emptyset} \) such that \(L(M_{\emptyset}) = \emptyset \): \(P(M_{\emptyset}) = 1 \)
- there’s an \(M' \) deciding \(\{0^n1^n \mid n \geq 0\} \): \(P(M') = 0 \)

\(P \) is also semantic:
If \(L(M) = L(M') \) then \(L(M) \) is regular iff \(L(M') \) is regular, so \(P(M) = 1 \) iff \(P(M') = 1 \), so \(P(M) = P(M') \)

By Rice’s Thm, we have \(\neg A_{\text{TM}} \leq_m \text{REGULAR}_{\text{TM}} \)
Recognizability via Logic

Definition: A decidable predicate $R(x,y)$ is a proposition about the input strings x and y, such that some TM M implements R. That is, for all x, y,

- $R(x,y)$ is TRUE \Rightarrow $M(x,y)$ accepts
- $R(x,y)$ is FALSE \Rightarrow $M(x,y)$ rejects

Can think of R as a function from $\Sigma^* \times \Sigma^* \rightarrow \{T,F\}$

Examples: $R(x,y) = \text{“xy has at most 100 zeroes”}$
$R(N,y) = \text{“TM N halts on y in at most 99 steps”}$
Theorem: A language A is \textit{recognizable} if and only if there is a decidable predicate $R(x, y)$ such that: $A = \{ x | \exists y \ R(x, y) \}$

Proof:

(1) If $A = \{ x | \exists y \ R(x, y) \}$ then A is recognizable

Define the TM $M(x)$: Enumerate all finite-length strings y, If $R(x, y)$ is true, accept $\Rightarrow M$ accepts exactly those x s.t. $\exists y \ R(x, y)$ is true

(2) If A is recognizable, then there is a \textit{decidable predicate} $R(x, y)$ such that: $A = \{ x | \exists y \ R(x, y) \}$

Suppose TM M recognizes A. Let $R(x, y)$ be TRUE iff M accepts x in $|y|$ steps $\Rightarrow M$ accepts $x \iff \exists y \ R(x, y)$
Oracle Turing Machines, Turing Reductions and Hierarchies
Oracle Turing Machines

Is \((M, w)\) in \(A^{\text{TM}}\)?

yes
An oracle Turing machine M that can ask membership queries in a set $B \subseteq \Gamma^*$ on a special “oracle tape” [Formally, M enters a special state q_b.]

The TM receives an answer to the query in one step [Formally, the transition function on q_l is defined in terms of the entire oracle tape: if the string y written on the oracle tape is in B, then state q_l is changed to q_{YES}, otherwise q_{NO}.]

This notion makes sense even if B is not decidable!
How to Think about Oracles?

A black-box subroutine. In terms of Turing Machine pseudocode: An oracle Turing machine M with oracle $B \subseteq \Gamma^*$ lets you include the following kind of branching instructions:

“if (z in B) then <do something> else <do something else>”

where z is some string defined earlier in pseudocode.

By definition, the oracle TM can always check the condition (z in B) in one step

This notion makes (mathematical) sense even if B is not decidable
Definition: A is recognizable with B if there is an oracle TM M with oracle B that recognizes A

Definition: A is decidable with B if there is an oracle TM M with oracle B that decides A

Language A “Turing-Reduces” to B

A \leq_T B
\(A_{TM} \) is decidable with \(\text{HALT}_{TM} \) \((A_{TM} \leq_T \text{HALT}_{TM})\)

We can decide if \(M \) accepts \(w \) using an ORACLE for the Halting Problem:

On input \((M,w)\),
 If \((M,w)\) is in \(\text{HALT}_{TM} \) then
 run \(M(w) \) and output its answer.
 else REJECT.
HALT_{TM} is decidable with A_{TM} (HALT_{TM} \leq_T A_{TM})

On input (M,w), decide if M halts on w as follows:

1. If (M,w) is in A_{TM} then ACCEPT

2. Else, switch the accept and reject states of M to get a machine M'. If (M',w) is in A_{TM} then ACCEPT

3. REJECT
Theorem: If $A \leq_m B$ then $A \leq_T B$

Proof (Sketch):

If $A \leq_m B$ then there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, where for every w,

$w \in A \iff f(w) \in B$

To decide A on the string w, just compute $f(w)$ and “call the oracle” for B

Theorem: $\neg \text{HALT}_{TM} \leq_T \text{HALT}_{TM}$

Theorem: $\neg \text{HALT}_{TM} \not\leq_m \text{HALT}_{TM}$

Why?
Limitations on Oracle TMs!

The following problem cannot be decided by any TM with an oracle for the Halting Problem:

\[\text{SUPERHALT} = \{ (M,x) \mid M, \text{ with an oracle for the Halting Problem, halts on } x \} \]

We can use the proof by diagonalization!
Assume \(H \) (with HALT oracle) decides SUPERHALT

Define \(D(X) := \text{"if } H(X,X) \text{ (with HALT oracle) accepts then LOOP, else ACCEPT."} \) (\(D \) uses a HALT oracle to simulate \(H \))

But \(D(D) \) halts \(\Leftrightarrow H(D,D) \) accepts \(\Leftrightarrow D(D) \) loops...

(by assumption) \hspace{2cm} (by def of \(D \))
Limits on Oracle TMs

“Theorem” There is an infinite hierarchy of unsolvable problems!

Given ANY oracle O, there is always a harder problem that cannot be decided with that oracle O

$\text{SUPERHALT}^0 = \text{HALT} = \{ (M,x) \mid M \text{ halts on } x \}.$

$\text{SUPERHALT}^1 = \{ (M,x) \mid M, \text{ with an oracle for } \text{HALT}_M, \text{ halts on } x \}$

$\text{SUPERHALT}^n = \{ (M,x) \mid M, \text{ with an oracle for } \text{SUPERHALT}^{n-1}, \text{ halts on } x \}$
\[\sum^0_1 \cap \Pi^0_1 = \Delta^0_1 \]

Decidable languages

\[= \sum^0_2 \cap \Pi^0_2 \]

\[\Delta^0_2 \]

\[\Delta^0_3 \]

\[\Sigma^0_3 \]

\[\Pi^0_3 \]

\[\Delta^0_3 \]

\[\sum^0_2 \]

\[\Pi^0_2 \]

OK Njus Warriw

Co-R.E. Languages

A_{TM}