CS154, Lecture 11: Self Reference, Foundation of Mathematics
Self-Reference and the Recursion Theorem

1. Living things are machine
2. Living things can self-reproduce
3. Machines cannot self-reproduce

Paradox?
Lemma: There is a computable function $q : \Sigma^* \rightarrow \Sigma^*$ such that for every string w, $q(w)$ is the description of a TM P_w that on every input, prints out w and then accepts.

“Proof” Define a TM Q:

$Q \xrightarrow{w} P_w (P_w erases its input and then prints w)
Theorem: There is a Self-Printing TM

Proof: First define a TM \(B \) which does this:

Now consider the TM that looks like this:
The Recursion Theorem

Theorem: For every TM T computing a function $t : \Sigma^* \times \Sigma^* \rightarrow \Sigma^*$ there is a Turing machine R computing a function $r : \Sigma^* \rightarrow \Sigma^*$, such that for every string w,

$$r(w) = t(R, w)$$
For every computable t, there is a computable r such that $r(w) = t(R,w)$ where R is a description of r

Suppose we can design a TM T of the form:
"On input (x,w), do bla bla with x and w, etc. etc."

We can then find a TM R with the behavior:
"On input w, do bla bla with a description of R and w, etc. etc."

We can use the operation:
"Obtain your own description"
in Turing machine pseudocode!
Theorem: \(A_{\text{TM}} \) is undecidable

Proof (using the recursion theorem)

Assume \(H \) decides \(A_{\text{TM}} \)

Construct machine \(B \) such that on input \(w \):

1. Obtains its own description \(B \)
2. Runs \(H \) on \((B, w)\) and flips the output

Running \(B \) on input \(w \) always does the opposite of what \(H \) says it should!

A formalization of “free will” paradoxes!

No single machine can predict behavior of all others
Computability and the Foundations of Mathematics
A formal system describes a formal language for
- writing (finite) mathematical statements,
- has a definition of what statements are “true”
- has a definition of a proof of a statement

Example: Every TM M defines some formal system F
{Mathematical statements in F} = Σ^* String w represents the statement “M accepts w”
✓ {True statements in F} = $L(M)$
✓ A proof that “M accepts w” can be defined to be an accepting computation history for M on w
Interesting Formal Systems

Define a formal system F to be *interesting* if:

1. Mathematical statements that can be precisely described in English should be expressible in F

2. Proofs are “convincing” – a TM can check that a proof of a theorem is correct (decidable)

3. Simple proofs that can be precisely described in English should be expressible in F
Interesting Formal Systems

Define a formal system \mathcal{F} to be *interesting* if:

1. Any mathematical statement about computation can be (computably) described as a statement of \mathcal{F}.
 Given (M, w), there is a (computable) $S_{M,w}$ in \mathcal{F} such that $S_{M,w}$ is true in \mathcal{F} if and only if M accepts w.

2. Proofs are “convincing” – a TM can check that a proof of a theorem is correct.
 This set is decidable: $\{(S, P) \mid P$ is a proof of S in $\mathcal{F}\}$

3. If S is in \mathcal{F} and there is a proof of S describable as a computation, then there’s a proof of S in \mathcal{F}.
 If M accepts w, then there is a proof P in \mathcal{F} of $S_{M,w}$
A formal system F is **consistent** or **sound** if no false statement has a valid proof in F (Proof in F implies Truth in F)

A formal system F is **complete** if every true statement has a valid proof in F (Truth in F implies Proof in F)

Consistency and Completeness
Limitations on Mathematics

For every consistent and interesting F,

Theorem 1. (Gödel 1931) F is incomplete: There are mathematical statements in F that are true but cannot be proved in F.

Theorem 2. (Gödel 1931) The consistency of F cannot be proved in F.

Theorem 3. (Church-Turing 1936) The problem of checking whether a given statement in F has a proof is undecidable.
Proof: Define Turing machine \(G(x) \):

1. Obtain own description \(G \) [Recursion Theorem]
2. Construct statement \(S' = \neg S_{G,\varepsilon} \)
3. Search for a proof of \(S' \) in \(F \) over all finite length strings. Accept if a proof is found.

Claim: \(S' \) is true in \(F \), but has no proof in \(F \)

\(S' \) basically says “There is no proof of \(S' \) in \(F \)”
(Gödel 1931) The consistency of F cannot be proved within any interesting consistent F

Proof: Suppose we can prove “F is consistent” in F

We constructed $\neg S_{G, \varepsilon} = “G$ does not accept $\varepsilon”$ which we showed is true, but has no proof in F

G does not accept ε \iff There is no proof of $\neg S_{G, \varepsilon}$ in F

But if there’s a proof in F of “F is consistent” then there is a proof in F of $\neg S_{G, \varepsilon}$ (here’s the proof):

“If $S_{G, \varepsilon}$ is true, then there is a proof in F of $\neg S_{G, \varepsilon}$

F is consistent, therefore $\neg S_{G, \varepsilon}$ is true.

But $S_{G, \varepsilon}$ and $\neg S_{G, \varepsilon}$ cannot both be true.

Therefore, $\neg S_{G, \varepsilon}$ is true”

This contradicts the previous theorem.
Proof: Suppose PROVABLE_F is decidable with TM P
Then we can decide A_{TM} using the following procedure:
On input (M, w), run the TM P on input $S_{M,w}$
If P accepts, examine all possible proofs in F
If a proof of $S_{M,w}$ is found then accept
If a proof of $\neg S_{M,w}$ is found then reject
If P rejects, then reject.

Why does this work?

(Church-Turing 1936) For every interesting consistent F, PROVABLE_F is undecidable