CS 154, Lecture 6: Communication Complexity
A model capturing one aspect of distributed computing.
Here focus on two parties: Alice and Bob
Function $f : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$
Two inputs, $x \in \{0,1\}^*$ and $y \in \{0,1\}^*$
We assume $|x| = |y| = n$, Think of n as HUGE
Alice only knows x, Bob only knows y
Goal: Compute $f(x, y)$ by communicating as few bits as possible between Alice and Bob
We do not count computation cost. We only care about the number of bits communicated.
Alice and Bob Have a Conversation

\[f(x, y) = 0 \]

\[A(x, \varepsilon) = 0 \]
\[B(y, 0) = 1 \]
\[A(x, 01) = 1 \]
\[B(y, 011) = 0 \]
\[A(x, 0110) = \text{STOP} \]

In every step: A bit is sent, which is a function of the party’s input and all the bits communicated so far.

Communication cost = number of bits communicated = 4 (in the example)
We assume Alice and Bob alternate in communicating, and the last bit sent is \(f(x, y) \)

More sophisticated models: separate number of rounds from number of bits
Def. A protocol for a function f is a pair of functions $A, B : \{0,1\}^* \times \{0,1\}^* \to \{0,1, \text{STOP}\}$ with the semantics:

On input (x, y), let $r := 0$, $b_0 = \varepsilon$

While ($b_r \neq \text{STOP}$),

$r++$

If r is odd, Alice sends $b_r = A(x, b_1 \cdots b_{r-1})$
else Bob sends $b_r = B(y, b_1 \cdots b_{r-1})$

Output b_{r-1}.

Number of rounds = $r - 1$
Def. The cost of a protocol P for f on n-bit strings is

$$\max_{x, y \in \{0,1\}^n} \text{number of rounds in } P \text{ to compute } f(x, y)$$

The communication complexity of f on n-bit strings is the minimum cost over all protocols for f on n-bit strings = the minimum number of rounds used by any protocol that computes $f(x, y)$, over all n-bit x, y
Example. Let $f : \{0,1\}^* \times \{0,1\}^* \to \{0,1\}$ be arbitrary.

There is always a “trivial” protocol:
Alice sends the bits of her x in odd rounds
Bob sends the bits of his y in even rounds
After $2n$ rounds, they both know each other’s input!

The communication complexity of every f is at most $2n
Example: \(\text{PARITY}(x, y) = \sum_i x_i + \sum_i y_i \mod 2. \)

What’s a good protocol for computing \(\text{PARITY} \)?

Alice sends \(b_1 = (\sum_i x_i \mod 2) \)
Bob sends \(b_2 = (b_1 + \sum_i y_i \mod 2). \) Alice stops.

The communication complexity of \(\text{PARITY} \) is 2
Example: $\text{MAJORITY}(x, y) = \text{most frequent bit in } xy$

What’s a good protocol for computing MAJORITY?

Alice sends $N_x = \text{number of 1s in } x$
Bob computes $N_y = \text{number of 1s in } y$,
 sends 1 iff $N_x + N_y$ is greater than $(|x| + |y|)/2 = n$

Communication complexity of MAJORITY is $O(\log n)$
Example: $\text{EQUALS}(x, y) = 1 \Leftrightarrow x = y$

What’s a good protocol for computing EQUALS???

Communication complexity of EQUALS is at most $2n$
Connection to Streaming and DFAs

Let $L \subseteq \{0,1\}^*$
Def. $f_L : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$
for x, y with $|x| = |y|$ as:

$f_L(x, y) = 1 \Leftrightarrow xy \in L$

Examples:

$L = \{x \mid \text{x has an odd number of 1s}\}$

$\Rightarrow f_L(x, y) = \text{PARITY}(x,y) = \sum_i x_i + \sum_i y_i \mod 2$

$L = \{x \mid \text{x has more 1s than 0s}\}$

$\Rightarrow f_L(x, y) = \text{MAJORITY}(x,y)$

$L = \{xx \mid x \in \{0,1\}^*\}$

$\Rightarrow f_L(x, y) = \text{EQUALS}(x,y)$
Connection to Streaming and DFAs

Let $L \subseteq \{0,1\}^*$
Def. $f_L: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$
for x, y with $|x| = |y|$ as:

\[f_L(x, y) = 1 \iff xy \in L \]

Theorem: If L has a streaming algorithm using $\leq s$ space, then the comm. complexity of f_L is at most $O(s)$.

Proof: Alice runs streaming algorithm A on x.
Sends the memory content of A: this is s bits of space
Bob starts up A with that memory content, runs A on y. Gets an output bit, sends to Alice.
Connection to Streaming and DFAs

Let $L \subseteq \{0,1\}^*$
Def. $f_L(x, y) = 1 \iff xy \in L$

Theorem: If L has a streaming algorithm using $\leq s$ space, then the comm. complexity of f_L is at most $O(s)$.

Corollary: For every regular language L, the comm. complexity of f_L is $O(1)$.

Example: Comm. Complexity of PARITY is $O(1)$

Corollary: Comm. Complexity of MAJORITY is $O(\log n)$, because there's a streaming algorithm for $\{x : x \text{ has more 1's than 0's}\}$ with $O(\log n)$ space

What about the Comm. Complexity of EQUALS?
Theorem: The comm. complexity of EQUALS is $\Theta(n)$. In particular, every protocol for EQUALS needs $\geq n$ bits of communication.

No communication protocol can do much better than “send your whole input”!

Corollary: $L = \{ww \mid w \text{ in } \{0,1\}^*\}$ is not regular.

Moreover, every streaming algorithm for L needs $c \cdot n$ bits of memory, for some constant $c > 0$.
Theorem: The comm. complexity of EQUALS is $\Theta(n)$. In particular, every protocol for EQUALS needs $\geq n$ bits of communication.

Idea: Consider all possible ways A & B can communicate.

Definition: The communication pattern of a protocol on inputs (x, y) is the sequence of bits that Alice & Bob send.
Theorem: The communication complexity of EQUALS is $\Theta(n)$. In particular, every protocol for EQUALS needs $\geq n$ bits of communication.

Proof: By contradiction. Suppose CC of EQUALS is $\leq n - 1$. Then there are $\leq 2^{n-1}$ possible communication patterns of that protocol, over all pairs of inputs (x, y) with n bits each.

Claim: There are $x \neq y$ such that on (x, x) and on (y, y), the protocol uses the same pattern P.

Now, what is the communication pattern on (x, y)? This pattern is also P (WHY?)

So Alice & Bob output the same bit on (x, y) and (x, x). But $EQUALS(x, y) = 0$ and $EQUALS(x, x) = 1$. Contradiction!
Randomized Protocols Help!

EQUALS needs $c\ n$ bits of communication, but...

Theorem: For all (x, y) of n bits each, there is a randomized protocol for $\text{EQUALS}(x, y)$ using only $O(\log n)$ bits of communication, which works with probability 99.9%!

Use Error Correcting Codes … E.g:

- Alice picks a random prime number p between 2 and n^2.
- She sends p and her string x modulo p.
- This is a number between 0 and n^2, takes $O(\log n)$ bits to send.
- Bob checks whether $y = x$ modulo p. Sends output bit.

Why does it work (with high probability)?
Communication Complexity: Powerful Tool (we seen just a tiny demonstration).

Communication Complexity, Streaming Algorithms and Regular languages – connected.

Randomness – could be a useful resource of computation (II) Questions?