CS154, Lecture 17:
coNP, Oracles again, Space Complexity
Definition: \(\text{coNP} = \{ L \mid \neg L \in \text{NP} \} \)

What does a coNP computation look like?

In NP algorithms, we can use a “guess” instruction in pseudocode:

\[\text{Guess string } y \text{ of } |x|^k \text{ length...} \]

and the machine accepts if some \(y \) leads to an accept state

In coNP algorithms, we can use a “try all” instruction:

\[\text{Try all strings } y \text{ of } |x|^k \text{ length...} \]

and the machine accepts if every \(y \) leads to an accept state
TAUTOLOGY = \{ \phi \mid \phi \text{ is a Boolean formula and every variable assignment satisfies } \phi \}\}

Theorem: TAUTOLOGY is in coNP

How would we write pseudocode for a coNP machine that decides TAUTOLOGY?

How would we write TAUTOLOGY as the complement of some NP language?
Is $P \subseteq \text{coNP}$?

Yes!

$L \in P$ implies that $\overline{L} \in P$ (hence $\overline{L} \in \text{NP}$)

In general, **deterministic** complexity classes are closed under complement
Is \(NP = coNP \)?

It is believed that \(NP \neq coNP \)
Definition: A language B is coNP-complete if

1. $B \in \text{coNP}$

2. For every A in coNP, there is a polynomial-time reduction from A to B (B is coNP-hard)
\[
\text{UNSAT} = \{ \phi \mid \phi \text{ is a Boolean formula and no variable assignment satisfies } \phi \}
\]

Theorem: UNSAT is coNP-complete

Proof: UNSAT \(\in\) coNP because \(\neg\text{UNSAT} = \text{SAT}\)

(2) UNSAT is coNP-hard:

Let \(A \in\) coNP. We show \(A \leq_p\) UNSAT

On input \(w\), transform \(w\) into a formula \(\phi\) using the Cook-Levin Theorem and an NP machine \(N\) for \(\neg A\)

\[
\begin{align*}
\text{If } w \in \neg A & \Rightarrow \phi \in \text{SAT} & \text{If } w \notin A & \Rightarrow \phi \notin \text{UNSAT} \\
\text{If } w \notin \neg A & \Rightarrow \phi \notin \text{SAT} & \text{If } w \in A & \Rightarrow \phi \in \text{UNSAT}
\end{align*}
\]
\[\text{UNSAT} = \{ \phi \mid \phi \text{ is a Boolean formula and no variable assignment satisfies } \phi \} \]

Theorem: \text{UNSAT} is coNP-complete

\[\text{TAUTOLOGY} = \{ \phi \mid \phi \text{ is a Boolean formula and every variable assignment satisfies } \phi \} \]
\[= \{ \phi \mid \neg \phi \in \text{UNSAT} \} \]

Theorem: \text{TAUTOLOGY} is coNP-complete

1. \text{TAUTOLOGY} \in \text{coNP} (already shown)
2. \text{TAUTOLOGY} is coNP-hard:

\[\text{UNSAT} \leq_p \text{TAUTOLOGY}: \text{Given formula } \phi, \text{ output } \neg \phi \]
Every NP-complete problem has a coNP-complete counterpart.

NP-complete problems:
SAT, 3SAT, CLIQUE, VC, SUBSET-SUM, ...

coNP-complete problems:
UNSAT, TAUTOLOGY, NOCLIQUE, ...
Is $P = NP \cap \text{coNP}$?
An Interesting Problem in NP ∩ coNP

FACTORIZING
= \{ (m, n) \mid m > n > 1 \text{ are integers, there is a prime factor } p \text{ of } m \text{ where } n \leq p < m \}

If FACTORIZING ∈ P, then we could break most public-key cryptography currently in use!

Theorem: FACTORIZING ∈ NP ∩ coNP
PRIMES = \{n \mid n \text{ is a prime integer}\}

PRIMES is in P
Manindra Agrawal, Neeraj Kayal and Nitin Saxena

Abstract
We present an unconditional deterministic polynomial-time algorithm that determines whether an input number is prime or composite.
Theorem: FACTORING \in NP \cap \text{coNP}

Proof:

The prime factorization \(p_1^{e_1} \ldots p_k^{e_k} \) of \(m \) can be used to efficiently prove that either \((m,n)\) is in FACTORING or \((m,n)\) is not in FACTORING:

First verify each \(p_i \) is prime and \(p_1^{e_1} \ldots p_k^{e_k} = m \)

If there is a \(p_i \geq n \) then \((m,n)\) is in FACTORING
If for all \(i \), \(p_i < n \) then \((m,n)\) is not in FACTORING
NP-complete problems:

SAT, 3SAT, CLIQUE, VC, SUBSET-SUM, ...

coNP-complete problems:

UNSAT, TAUTOLOGY, NOHAMPATH, ...

(NP \cap coNP)-complete problems:

Nobody knows if they exist

P, NP, coNP can be defined in terms of specific machine models, and for every possible machine we can give an encoding of it.

NP \cap coNP is not known to have a corresponding machine model
Polynomial Time With Oracles
Think in terms of Turing Machine pseudocode or a subroutine

An oracle Turing machine M with oracle $B \subseteq \Gamma^*$ lets you include the following kind of branching instructions:

“if (z in B) then <do something>
else <do something else>”

where z is some string defined earlier in pseudocode.

By definition, the oracle TM can always check the condition (z in B) in one step
Some Complexity Classes With Oracles

\(P^B = \{ L \mid L \text{ can be decided by some polynomial-time TM with an oracle for } B \} \)

\(P^{\text{SAT}} = \text{the class of languages decidable in polynomial time with an oracle for SAT} \)

\(P^{\text{NP}} = \text{the class of languages decidable by some polynomial-time oracle TM with an oracle for some } B \text{ in NP} \)
Is $\mathsf{P^{SAT}} \subseteq \mathsf{P^{NP}}$?
Yes. By definition...

Is $\mathsf{P^{NP}} \subseteq \mathsf{P^{SAT}}$?
Yes:

Every NP language can be reduced to SAT!

For every poly-time TM M with oracle $B \in \mathsf{NP}$, we can simulate every query z to oracle B by reducing z to a formula ϕ in poly-time, then asking an oracle for SAT instead.
\[P_B = \{ L \mid \text{L can be decided by a polynomial-time TM with an oracle for } B \} \]

Suppose \(B \) is in \(P \).

Is \(P_B \subseteq P \)?

Yes

For every poly-time TM \(M \) with oracle \(B \in P \), we can simulate every query \(z \) to oracle \(B \) by simply running a polynomial-time decider for \(B \).

The resulting machine runs in polynomial time
Is $\text{NP} \subseteq \text{P}^{\text{NP}}$?

Yes

Just ask the oracle for the answer!

For every $L \in \text{NP}$ define an oracle TM M^L which asks the oracle if the input is in L.
Is \(\text{coNP} \subseteq \text{P}^{\text{NP}} \)?

Yes!

Again, just ask the oracle for the answer!

For every \(L \in \text{coNP} \) we know \(\neg L \in \text{NP} \)

Define an oracle TM \(M^L \) which asks the oracle if the input is in \(\neg L \)

- \text{accept} if the answer is no,
- \text{reject} if the answer is yes

More generally, we have \(\text{P}^{\text{NP}} = \text{P}^{\text{coNP}} \)
$NP^B = \{ L \mid L \text{ can be decided by a polynomial-time nondeterministic TM with an oracle for } B \}$

$coNP^B = \{ L \mid L \text{ can be decided by a poly-time co-nondeterministic TM with an oracle for } B \}$

Is $NP = NP^{NP}$?

Is $coNP^{NP} = NP^{NP}$?

It is believed that the answers are NO
Two Boolean formulas ϕ and ψ over the variables x_1, \ldots, x_n are equivalent if they have the same value on every assignment to the variables.

Are x and $x \lor x$ equivalent? Yes

Are x and $x \lor \neg x$ equivalent? No

Are $(x \lor \neg y) \land \neg(\neg x \land y)$ and $x \lor \neg y$ equivalent? Yes

A Boolean formula ϕ is minimal if no smaller formula is equivalent to ϕ.

$\text{MIN-FORMULA} = \{ \phi \mid \phi \text{ is minimal} \}$
Theorem: \textsc{MIN-FORMULA} \in \text{coNP}^{\text{NP}}

Proof:

Define \text{NEQUIV} = \{ (\phi, \psi) | \phi \text{ and } \psi \text{ are not equivalent} \}

Observation: \text{NEQUIV} \in \text{NP} \quad \text{(Why?)}

Here is a \text{coNP}^{\text{NEQUIV}} machine for \textsc{MIN-FORMULA}:

Given a formula \phi,

\text{Try all formulas } \psi \text{ smaller than } \phi:

\text{If } (\phi, \psi) \in \text{NEQUIV} \text{ then } \text{accept} \text{ else } \text{reject}

\textsc{MIN-FORMULA} is not known to be in \text{coNP}
Measuring Space Complexity

We measure space complexity by looking at the largest tape index reached during the computation.
Let M be a deterministic TM.

Definition: The space complexity of M is the function $S : \mathbb{N} \rightarrow \mathbb{N}$, where $S(n)$ is the largest tape index reached by M on any input of length n.

Definition: $\text{SPACE}(S(n)) = \{ L | L \text{ is decided by a Turing machine with } O(S(n)) \text{ space complexity} \}$
Theorem: \textsc{3SAT} \in \text{SPACE}(n)

“Proof”: Try all possible assignments to the (at most n) variables in a formula of length n. This can be done in $O(n)$ space.

Theorem: \textsc{NTIME}(t(n)) is in \text{SPACE}(t(n))

“Proof”: Try all possible computation paths of $t(n)$ steps for an NTM on length-n input. This can be done in $O(t(n))$ space.
The class $\text{SPACE}(s(n))$ formalizes the class of problems solvable by computers with *bounded memory*.

Fundamental (Unanswered) Question: **How does time relate to space, in computing?**

$\text{SPACE}(n^2)$ problems could potentially take much longer than n^2 steps to solve.

Intuition: You can re-use space, but not time
Let M be a halting TM that on input x, uses S space.

How many time steps can $M(x)$ possibly take?

Is there an upper bound?

The number of time steps is at most the total number of possible configurations!

(If a configuration repeats, the machine is looping.)

A configuration of M specifies a head position, state, and S cells of tape content. The total number of configurations is at most:

$$S |Q| |\Gamma|^S = 2^{O(S)}$$
Corollary:
Space $S(n)$ computations can be decided in $2^{O(S(n))}$ time:

$$\text{SPACE}(s(n)) \subseteq \bigcup_{c \in \mathbb{N}} \text{TIME}(2^{c \cdot s(n)})$$

Idea: After $2^{O(s(n))}$ time steps, a $s(n)$-space bounded computation must have repeated a configuration, so then it will never halt...
PSPACE = \bigcup_{k \in \mathbb{N}} \text{SPACE}(n^k)

EXPTIME = \bigcup_{k \in \mathbb{N}} \text{TIME}(2^{n^k})

PSPACE \subseteq \text{EXPTIME}
Is $P \subseteq \text{PSPACE}$?

YES
Is \(\text{NP} \subseteq \text{PSPACE} \)?

YES
Is $\text{NP}^{\text{NP}} \subseteq \text{PSPACE}$?

YES
\(P \subseteq NP \subseteq PSPACE \subseteq EXPTIME \)

Theorem: \(P \neq EXPTIME \)

Why? The Time Hierarchy Theorem!

\[\text{TIME}(2^n) \not\subseteq P \]

Therefore \(P \neq EXPTIME \)
Intuition: If you have more space to work with, then you can solve strictly more problems!

Theorem: For functions $s, S : \mathbb{N} \rightarrow \mathbb{N}$ where $s(n)/S(n) \rightarrow 0$

$$\text{SPACE}(s(n)) \subsetneq \text{SPACE}(S(n))$$

Proof IDEA: Diagonalization:
Make a machine M that uses $S(n)$ space and “does the opposite” of all $s(n)$ space machines on at least one input

So $L(M)$ is in $\text{SPACE}(S(n))$ but not $\text{SPACE}(s(n))$