CS 154, Lecture 3: DFA ≡ NFA, Regular Expressions
Homework 1 is coming out ...
Deterministic Finite Automata

Computation with finite memory
Non-Deterministic Finite Automata

Computation with finite memory
and “verified guessing”
From NFAs to DFAs

Input: NFA $N = (Q, \Sigma, \delta, Q_0, F)$

Output: DFA $M = (Q', \Sigma, \delta', q_0', F')$

To learn if an NFA accepts, we could do the computation in parallel, maintaining the set of all possible states that can be reached.

Idea:
Set $Q' = 2^Q$
From NFAs to DFAs: **Subset Construction**

Input: NFA $N = (Q, \Sigma, \delta, Q_0, F)$

Output: DFA $M = (Q', \Sigma, \delta', q'_0, F')$

- $Q' = 2^Q$
- $\delta' : Q' \times \Sigma \rightarrow Q'$
- $\delta'(R, \sigma) = \bigcup_{r \in R} \varepsilon(\delta(r, \sigma))$
- $q'_0 = \varepsilon(Q_0)$
- $F' = \{ R \in Q' \mid \text{there exists some } f \in F \}$

For $S \subseteq Q$, the ε-closure of S is $\varepsilon(S) = \{ q \mid q \text{ reachable from some } s \in S \}$ by taking 0 or more ε transitions
Example of the ε-closure

$\varepsilon(\{q_0\}) = \{q_0, q_1, q_2\}$

$\varepsilon(\{q_1\}) = \{q_1, q_2\}$

$\varepsilon(\{q_2\}) = \{q_2\}$
Given: NFA $N = (\{1,2,3\}, \{a,b\}, \delta, \{1\}, \{1\})$

Construct: Equivalent DFA $M = (2^{\{1,2,3\}}, \{a,b\}, \delta', \{1,3\}, ...)$
Reverse Theorem for Regular Languages

Theorem: The reverse of a regular language is also a regular language

If a language can be recognized by a DFA that reads strings from right to left, then there is an “normal” DFA that accepts the same language

Proof?

Given a DFA for a language L, “reverse” its arrows and flip its start and accept states, getting an NFA. Convert that NFA back to a DFA!
Using NFAs in place of DFAs can make proofs about regular languages much easier!

Remember this on homework/exams!
Union Theorem using NFAs?
Regular Languages are closed under concatenation

Concatenation: \(A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \} \)

Given DFAs \(M_1 \) and \(M_2 \), connect the accept states of \(M_1 \) to the start states of \(M_2 \)

\[
L(N) = L(M_1) \cdot L(M_2)
\]
Regular Languages are closed under star

\[A^* = \{ s_1 \ldots s_k \mid k \geq 0 \text{ and each } s_i \in A \} \]

Let \(M \) be a DFA, and let \(L = L(M) \)

We can construct an NFA \(N \) that recognizes \(L^* \)
Formally, the construction is:

Input: DFA $M = (Q, \Sigma, \delta, q_1, F)$

Output: NFA $N = (Q', \Sigma, \delta', q_0, F')$

$$Q' = Q \cup \{q_0\}$$

$$F' = F \cup \{q_0\}$$

$$\delta'(q, a) = \begin{cases}
\delta(q, a) & \text{if } q \in Q \text{ and } a \neq \varepsilon \\
\{q_1\} & \text{if } q \in F \text{ and } a = \varepsilon \\
\{q_1\} & \text{if } q = q_0 \text{ and } a = \varepsilon \\
\emptyset & \text{if } q = q_0 \text{ and } a \neq \varepsilon \\
\emptyset & \text{else}
\end{cases}$$
Regular Languages are Closed Under Star

How would we prove that this NFA construction works?

Want to show: \(L(N) = L^* \)

1. \(L(N) \supseteq L^* \)
2. \(L(N) \subseteq L^* \)
1. \(L(N) \supseteq L^* \)

Assume \(w = w_1...w_k \) is in \(L^* \) where \(w_1,...,w_k \in L \)

We show \(N \) accepts \(w \) by induction on \(k \)

Base Cases:
- \(k = 0 \) (\(w = \varepsilon \))
- \(k = 1 \) (\(w \in L \))

Inductive Step:
Assume \(N \) accepts all strings \(v = v_1...v_k \in L^* \), \(v_i \in L \)

Let \(u = u_1...u_k u_{k+1} \in L^* \), \(u_j \in L \)

Since \(N \) accepts \(u_1...u_k \) (by induction) and \(M \) accepts \(u_{k+1} \), \(N \) also accepts \(u \) (by construction)
2. $L(N) \subseteq L^*$

Assume w is accepted by N; we want to show $w \in L^*$

If $w = \varepsilon$, then $w \in L^*$

I.H. N accepts u and takes at most k ε-transitions

$\Rightarrow u \in L^*$

Let w be accepted by N with $k+1$ ε-transitions.

Write w as $w = uv$, where v is the substring read after the last ε-transition

$u \in L(N)$, so by I.H.

$u \in L^*$

$v \in L$

$w = uv \in L^*$
Closure Properties for Regular Languages

√ **Union:** $A \cup B = \{ w | w \in A \text{ or } w \in B \}$

√ **Intersection:** $A \cap B = \{ w | w \in A \text{ and } w \in B \}$

√ **Complement:** $\overline{A} = \{ w \in \Sigma^* | w \notin A \}$

√ **Reverse:** $A^R = \{ w_1 \ldots w_k | w_k \ldots w_1 \in A, w_i \in \Sigma \}$

√ **Concatenation:** $A \cdot B = \{ vw | v \in A \text{ and } w \in B \}$

√ **Star:** $A^* = \{ s_1 \ldots s_k | k \geq 0 \text{ and each } s_i \in A \}$

Theorem: if A and B are regular then so are:
- $A \cup B$, $A \cap B$, \overline{A}, A^R, $A \cdot B$, and A^*
Regular Expressions

Computation as simple, logical description

A totally different way of thinking about computation:
What is the complexity of describing the strings in the language?
Inductive Definition of RegExp

Let \(\Sigma \) be an alphabet. We define the regular expressions over \(\Sigma \) inductively:

For all \(\sigma \in \Sigma \), \(\sigma \) is a regexp
\(\varepsilon \) is a regexp
\(\emptyset \) is a regexp

If \(R_1 \) and \(R_2 \) are both regexps, then
\((R_1R_2)\), \((R_1 + R_2)\), and \((R_1)^*\) are regexps
Precedence Order:

* then · then +

Example: \(R_1 \times R_2 + R_3 = ((R_1 \times) \cdot R_2) + R_3 \)
Definition: Regexps Represent Languages

The regexp $\sigma \in \Sigma$ represents the language $\{\sigma\}$

The regexp ϵ represents $\{\epsilon\}$

The regexp \emptyset represents \emptyset

If R_1 and R_2 are regular expressions representing L_1 and L_2 then:

$(R_1 R_2)$ represents $L_1 \cdot L_2$

$(R_1 + R_2)$ represents $L_1 \cup L_2$

$(R_1)^*$ represents L_1^*
Regexp Represent Languages

For every regexp R, define $L(R)$ to be the language that R represents.

A string $w \in \Sigma^*$ is accepted by R (or, w matches R) if $w \in L(R)$

Examples: 0, 010, and 01010 match $(01)^*0$

110101110100100 matches $(0+1)^*0$
Assume $\Sigma = \{0,1\}$

$\{ w \mid w \text{ has exactly a single } 1 \}$

0^*10^*

$\{ w \mid w \text{ contains } 001 \}$

$(0+1)^*001(0+1)^*$
What language does the regexp \emptyset^* represent?

$\{\varepsilon\}$
Assume $\Sigma = \{0,1\}$

\[
\{ w \mid \text{w has length } \geq 3 \text{ and its 3rd symbol is 0} \}
\]

\[
(0+1)(0+1)0(0+1)^\ast
\]
Assume $\Sigma = \{0, 1\}$

\[
\{ w \mid \text{every odd position in } w \text{ is a } 1 \}\]

\[
(1(0 + 1))^*(1 + \varepsilon)
\]
Claim:
A string \(w \) has equal occurrences of 01 and 10 \(\iff \) \(w \) starts and ends with the same bit.

\[
1 + 0 + \varepsilon + 0(0+1)^*0 + 1(0+1)^*1
\]
DFAs \equiv NFAs \equiv Regular Expressions!

L can be represented by some regexp
\iff L is regular
L can be represented by some regexp
\[\Rightarrow L \text{ is regular}\]
L can be represented by some regexp
⇒ L is regular

Base Cases (R has length 1):
Given any regexp R, we will construct an NFA N s.t.
N accepts exactly the strings accepted by R.

- \(R = \sigma \)
- \(R = \varepsilon \)
- \(R = \emptyset \)

Proof by induction on the **length** of the regexp R
Induction Step: Suppose every regexp of length \(\leq k \) represents some regular language.

Consider a regexp \(R \) of length \(k > 1 \)

Three possibilities for \(R \):

\[
R = R_1 + R_2 \\
R = R_1 R_2 \\
R = (R_1)^*
\]
Induction Step: Suppose every regexp of length $< k$ represents some regular language.

Consider a regexp R of length $k \geq 1$

Three possibilities for R:

1. $R = R_1 + R_2$ By induction, R_1 and R_2 represent some regular languages, L_1 and L_2

2. $R = R_1 R_2$ But $L(R) = L(R_1 + R_2) = L_1 \cup L_2$

3. $R = (R_1)^*$ so $L(R)$ is regular, by the union theorem!
Induction Step: Suppose every regexp of length $< k$ represents some regular language.

Consider a regexp R of length $k > 1$

Three possibilities for R:

- $R = R_1 + R_2$
 By induction, R_1 and R_2 represent some regular languages, L_1 and L_2

- $R = R_1 R_2$
 But $L(R) = L(R_1 R_2) = L_1 \cdot L_2$

- $R = (R_1)^*$
 so $L(R)$ is regular by the concatenation theorem
Induction Step: Suppose every regexp of length \(< k\) represents some regular language.

Consider a regexp \(R\) of length \(k \geq 1\)

Three possibilities for \(R:\)

\[R = R_1 + R_2 \quad \text{By induction, } R_1 \text{ and } R_2 \text{ represent some regular languages, } L_1 \text{ and } L_2 \]

\[R = R_1 R_2 \quad \text{But } L(R) = L(R_1^*) = L_1^* \]

\[R = (R_1)^* \quad \text{so } L(R) \text{ is regular, by the star theorem} \]
Induction Step: Suppose every regexp of length $< k$ represents some regular language.

Consider a regexp R of length $k > 1$

Three possibilities for R:

- $R = R_1 + R_2$
 By induction, R_1 and R_2 represent some regular languages, L_1 and L_2

- $R = R_1 R_2$
 But $L(R) = L(R_1^*) = L_1^*$
 so $L(R)$ is regular, by the star theorem

- $R = (R_1)^*$

Therefore: If L is represented by a regexp, then L is regular
Give an NFA that accepts the language represented by \((1(0 + 1))^*\)

Regular expression: \((1(0+1))^*\)
Generalized NFAs (GNFA)

L can be represented by a regexp

\iff

L is a regular language

Idea: Transform an NFA for L into a regular expression by removing states and re-labeling the arcs with regular expressions

Rather than reading in just letters from the string on a step, we can read in entire substrings
This GNFA recognizes $L(a^*b(cb)^*a)$

Is $aaabcbcba$ accepted or rejected?
Is bba accepted or rejected?
Is $bcba$ accepted or rejected?

This GNFA recognizes $L(a^*b(cb)^*a)$
Add unique start and accept states
While the machine has more than 2 states:

Pick an internal state, rip it out and re-label the arrows with regexps, to account for paths through the missing state.
While the machine has more than 2 states:

In general:

\[
R(q_1, q_2) R(q_2, q_3)^* R(q_2, q_2) \]

\[
+ R(q_1, q_3)
\]
\[R(q_0, q_3) = (a*b)(a+b)^* \] represents L(N)
DFAs ↔ NFAs

Regular Languages ↔ Regular Expressions

DEFINITION
Parting thoughts:
Regular Languages can be defined by their closure properties
NFA=DFA, does it mean that non-determinism is free for Finite Automata?

Questions?