CS154, Lecture 8: Undecidability, Mapping Reductions
A Concrete Undecidable Problem: The Acceptance Problem for TMs

$$A_{TM} = \{ (M, w) \mid M \text{ is a TM that accepts string } w \}$$

Theorem [Turing ‘30s]: A_{TM} is recognizable but NOT decidable

Corollary: $\neg A_{TM}$ is not recognizable
\[A_{TM} = \{ (M, w) \mid M \text{ is a TM that accepts string } w \} \]

\(A_{TM} \) is undecidable: (proof by contradiction)

Suppose \(H \) is a machine that decides \(A_{TM} \)

\[
H((M, w)) = \begin{cases}
 \text{Accept} & \text{if } M \text{ accepts } w \\
 \text{Reject} & \text{if } M \text{ does not accept } w
\end{cases}
\]

Define a new machine \(D \) as follows:

\(D(M) \) : Run \(H \) on \((M, M) \) and output the opposite of \(H \)

\[
D(D) = \begin{cases}
 \text{Reject} & \text{if } D \text{ accepts } D \\
 \text{Accept} & \text{if } D \text{ does not accept } D
\end{cases}
\]
The table of outputs of \(H(x,y) \)

<table>
<thead>
<tr>
<th></th>
<th>(M_1)</th>
<th>(M_2)</th>
<th>(M_3)</th>
<th>(M_4)</th>
<th>(\ldots)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_1)</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td>(M_2)</td>
<td>reject</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
</tr>
<tr>
<td>(M_3)</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
</tr>
<tr>
<td>(M_4)</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
</tr>
<tr>
<td>(\ldots)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D)</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>
The outputs of $D(x)$

<table>
<thead>
<tr>
<th></th>
<th>M_1</th>
<th>M_2</th>
<th>M_3</th>
<th>M_4</th>
<th>...</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td></td>
</tr>
<tr>
<td>M_3</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td>M_4</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>

$D(x)$ outputs the opposite of $H(x,x)$

$D(D)$ outputs the opposite of $H(D,D)=D(D)$
$A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$

A_{TM} is undecidable: (constructive proof)

Let H be a machine that recognizes A_{TM}

$$H((M,w)) = \begin{cases}
\text{Accept} & \text{if } M \text{ accepts } w \\
\text{Reject or loops} & \text{if } M \text{ does not accept } w
\end{cases}$$

Define a new machine D_H as follows:

$D_H(M):$ Run H on (M,M) until the simulation halts
Output the opposite answer
\[D_H \left(D_H \right) = \begin{cases} \text{Reject if } D_H \text{ accepts} & \text{(i.e. if } H(D_H, D_H) = \text{Accept}) \\ \text{Accept if } D_H \text{ rejects} & \text{(i.e. if } H(D_H, D_H) = \text{Reject}) \\ \text{Loops if } D_H \text{ loops on} & \text{(i.e. if } H(D_H, D_H) \text{ loops}) \end{cases} \]

Note: There is no contradiction here!

\[D_H \text{ must loop on } D_H \]

We have an instance \((D_H, D_H)\) which is not in \(A_{TM}\) but \(H\) fails to tell us that!

\[H(D_H, D_H) \text{ runs forever} \]
That is:

Given the code of any machine H that recognizes A_{TM} we can effectively construct an instance (D_H, D_H), where:

1. (D_H, D_H) does not belong to A_{TM}
2. H runs forever on the input (D_H, D_H)

So H cannot decide A_{TM}

Given any program that recognizes the Acceptance Problem, we can efficiently construct an input where the program hangs!
Theorem: A_{TM} is recognizable but NOT decidable

Corollary: $\neg A_{TM}$ is not recognizable!

Proof: Suppose $\neg A_{TM}$ is recognizable. Then $\neg A_{TM}$ and A_{TM} are both recognizable...
But that would mean they’re both decidable!
The Halting Problem

\(\text{HALT}_{\text{TM}} = \{ (M, w) \mid M \text{ is a TM that halts on string } w \} \)

Theorem: \(\text{HALT}_{\text{TM}} \) is undecidable

Proof: Assume (for a contradiction) there is a TM \(H \) that decides \(\text{HALT}_{\text{TM}} \)

We use \(H \) to construct a TM \(M' \) that decides \(A_{\text{TM}} \)

\(M'(M, w) \): Run \(H(M, w) \)

If \(H \) rejects then \(\text{reject} \)

If \(H \) accepts, run \(M \) on \(w \) until it halts:

If \(M \) accepts, then \(\text{accept} \)

If \(M \) rejects, then \(\text{reject} \)
If M doesn’t halt:
reject

If M halts

Does M halt on w?

(M, w)

(M, w)

M'

H

M
Can often prove a language L is undecidable by proving: if L is decidable, then so is A_{TM}

We reduce A_{TM} to the language L

$A_{TM} \leq^m L$
Mapping Reductions

\[f : \Sigma^* \rightarrow \Sigma^* \] is a computable function if there is a Turing machine \(M \) that halts with just \(f(w) \) written on its tape, for every input \(w \).

A language \(A \) is \textit{mapping reducible} to language \(B \), written as \(A \leq_m B \), if there is a computable \(f : \Sigma^* \rightarrow \Sigma^* \) such that for every \(w \),

\[w \in A \iff f(w) \in B \]

\(f \) is called a mapping reduction (or many-one reduction) from \(A \) to \(B \).
Let $f : \Sigma^* \rightarrow \Sigma^*$ be a computable function such that $w \in A \iff f(w) \in B$

Say: A is mapping reducible to B
Write: $A \leq_m B$
Theorem: If $A \leq_m B$ and $B \leq_m C$, then $A \leq_m C$
Theorem: If $A \leq_m B$ and B is decidable, then A is decidable

Proof: Let M decide B. Let f be a mapping reduction from A to B

To decide A, we build a machine M'

$M'(w)$:

1. Compute $f(w)$
2. Run M on $f(w)$, output its answer

- $w \in A \iff f(w) \in B$ so $w \in A \implies M'$ accepts w
- $w \notin A \implies M'$ rejects w
Theorem: If $A \leq_m B$ and B is recognizable, then A is recognizable.

Proof: Let M recognize B.

Let f be a mapping reduction from A to B.

To recognize A, we build a machine M'.

$M'(w)$:

1. Compute $f(w)$

2. Run M on $f(w)$, output its answer if you ever receive one.
Theorem: If $A \leq_m B$ and B is decidable, then A is decidable

Corollary: If $A \leq_m B$ and A is undecidable, then B is undecidable

Theorem: If $A \leq_m B$ and B is recognizable, then A is recognizable

Corollary: If $A \leq_m B$ and A is unrecognizable, then B is unrecognizable
The proof that the Halting Problem is undecidable can be seen as constructing a mapping reduction from A_{TM} to $HALT_{TM}$

Theorem: $A_{TM} \leq_m HALT_{TM}$

$f(M, w) := (M', w)$ where

“$M'(w) = \text{accepts if } M(w) \text{ accepts else loops forever}”$

How?

We have $(M, w) \in A_{TM} \iff (M', w) \in HALT_{TM}$
Theorem: \(A_{TM} \leq_m HALT_{TM} \)

Corollary: \(\neg A_{TM} \leq_m \neg HALT_{TM} \)

Proof?

Corollary: \(\neg HALT_{TM} \) is unrecognizable!

Proof: If \(\neg HALT_{TM} \) were recognizable, then \(\neg A_{TM} \) would be recognizable...
Theorem: \(\text{HALT}_{TM} \leq_m A_{TM} \)

Proof: Define the computable function

\[
f(M, w) := (M', w) \text{ where } \\
M'(w) \text{ accepts if } M(w) \text{ halts else loop forever" (how?)}
\]

Observe \((M, w) \in \text{HALT}_{TM} \iff (M', w) \in A_{TM}\)
Corollary: $\text{HALT}_{\text{TM}} \equiv_m \text{A}_{\text{TM}}$

I can give you the magical power to either compute the halting problem, or the acceptance problem. Which do you want?

Surprise me
The Emptiness Problem

\[\text{EMPTY}_{\text{DFA}} = \{ M \mid M \text{ is a DFA such that } L(M) = \emptyset \} \]

Given a DFA, does it reject every input?

Theorem: \text{EMPTY}_{\text{DFA}} is decidable

Why?

\[\text{EMPTY}_{\text{NFA}} = \{ M \mid M \text{ is a NFA such that } L(M) = \emptyset \} \]

\[\text{EMPTY}_{\text{REX}} = \{ R \mid R \text{ is a regexp such that } L(R) = \emptyset \} \]
The Emptiness Problem for TMs

\[\text{EMPTY}_{\text{TM}} = \{ M \mid M \text{ is a TM such that } L(M) = \emptyset \} \]

Given a program, does it reject every input?

Theorem: \(\text{EMPTY}_{\text{TM}} \) is not recognizable

Proof: Show that \(\neg A_{\text{TM}} \leq_m \text{EMPTY}_{\text{TM}} \)

\[f(M, w) := M' \text{ where} \]

“\(M'(x) := M(x) \) if \((x = w) \), else reject” (how?)

\[M, w \in A_{\text{TM}} \iff L(M') \neq \emptyset \]
\[\iff M' \notin \text{EMPTY}_{\text{TM}} \]
\[\iff f(M, w) \notin \text{EMPTY}_{\text{TM}} \]
The Regularity Problem for Turing Machines

\(\text{REGULAR}_{\text{TM}} = \{M \mid M \text{ is a TM and } L(M) \text{ is regular}\} \)

Given a program, is it equivalent to some DFA?

Theorem: \(\text{REGULAR}_{\text{TM}} \) is not recognizable

Proof: Show that \(\neg A_{\text{TM}} \leq_m \text{REGULAR}_{\text{TM}} \)

\(f(M, w) := M' \): where \(M' \) is a TM such that

“\(M'(x) := M(w) \) if (\(x = 0^n1^n \)) else reject” (how?)

\((M, w) \in A_{\text{TM}} \Rightarrow f(M, w) = M' \) such that \(M' \) accepts \(\{0^n1^n\} \)

\((M, w) \notin A_{\text{TM}} \Rightarrow f(M, w) = M' \) such that \(M' \) accepts nothing

\((M, w) \notin A_{\text{TM}} \iff f(M,w) \in \text{REGULAR}_{\text{TM}} \)
The Equivalence Problem

\[\text{EQ}_{\text{TM}} = \{(M, N) \mid M, N \text{ are TMs and } L(M) = L(N)\} \]

Do two programs compute the same function?

Theorem: \(\text{EQ}_{\text{TM}} \) is unrecognizable

Proof: Reduce \(\text{EMPTY}_{\text{TM}} \) to \(\text{EQ}_{\text{TM}} \)

Let \(M_\emptyset \) be a “dummy” TM with no path from start state to accept state

Define \(f(M) := (M, M_\emptyset) \)

\[M \in \text{EMPTY}_{\text{TM}} \iff L(M) = L(M_\emptyset) = \emptyset \]
\[\iff (M', M_\emptyset) \in \text{EQ}_{\text{TM}} \]
Moral:
Analyzing Programs is Really, Really Hard.
Post’s Correspondence Problem

Given a collection of domino types, can we build up a match?

PCP = \{ P \mid P \text{ is a set of dominos with a match} \}

Theorem: PCP is undecidable!