CS154, Lecture 10: Rice’s Theorem, Oracle Machines
Moral: Analyzing Programs is Really, Really Hard

But can we more easily tell when some “program analysis” problem is undecidable?
Problem 1 Undecidable
\{(M, w) \mid M \text{ is a TM that on input } w, \text{ tries to move its head past the left end of the input } \}

Problem 2 Decidable
\{(M, w) \mid M \text{ is a TM that on input } w, \text{ moves its head left at least once, at some point}\}
Problem 1 Undecidable

$L' = \{(M, w) \mid M \text{ is a TM that on input } w, \text{ tries to move its head past the left end of the input}\}$

Proof: Reduce A_{TM} to L'

On input (M, w), make a TM N that shifts w over one cell, marks a special symbol $\$$ on the leftmost cell, then simulates $M(w)$ on the tape.
If M’s head moves to the cell with $\$$ but has not yet accepted, N moves the head back to the right.
If M accepts, N tries to move its head past the $\$$.

(M, w) is in A_{TM} if and only if (N, w) is in L'
Problem 2 Decidable

\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ moves its head left at least once, at some point} \}

On input \((M, w)\), run \(M\) on \(w\) for \(|Q| + |w| + 1\) steps,
where \(|Q| = \text{ number of states of } M\).

Accept If \(M\)'s head moved left at all
Reject Otherwise

(Why does this work?)
Problem 3

REVERSE = \{ M \mid M \text{ is a TM with the property:}
for all w, $M(w)$ accepts $\Leftrightarrow M(w^R)$ accepts\}.

Decidable or not?

REVERSE is undecidable.
Rice’s Theorem

Let \(P : \{\text{Turing Machines}\} \rightarrow \{0,1\} \).

(Think of 0=false, 1=true) Suppose \(P \) satisfies:

1. **(Nontrivial)** There are TMs \(M_{\text{YES}} \) and \(M_{\text{NO}} \)
 where \(P(M_{\text{YES}}) = 1 \) and \(P(M_{\text{NO}}) = 0 \)

2. **(Semantic)** For all TMs \(M_1 \) and \(M_2 \),
 If \(L(M_1) = L(M_2) \) then \(P(M_1) = P(M_2) \)

Then, \(L = \{M \mid P(M) = 1\} \) is undecidable.

A Huge Hammer for Undecidability!
Some Examples and Non-Examples

<table>
<thead>
<tr>
<th>Semantic Properties $P(M)$</th>
<th>Not Semantic!</th>
</tr>
</thead>
<tbody>
<tr>
<td>• M accepts 0</td>
<td>• M halts and rejects 0</td>
</tr>
<tr>
<td>• for all w, $M(w)$ accepts iff $M(w^R)$ accepts</td>
<td>• M tries to move its head off the left end of the tape, on input 0</td>
</tr>
<tr>
<td>• $L(M) = {0}$</td>
<td>• M never moves its head left on input 0</td>
</tr>
<tr>
<td>• $L(M)$ is empty</td>
<td>• M has exactly 154 states</td>
</tr>
<tr>
<td>• $L(M) = \Sigma^*$</td>
<td>• M halts on all inputs</td>
</tr>
<tr>
<td>• M accepts 154 strings</td>
<td>There are M_1 and M_2 such that $L(M_1) = L(M_2)$ and $P(M_1) \neq P(M_2)$</td>
</tr>
</tbody>
</table>

$L = \{M \mid P(M) \text{ is true}\}$ is undecidable
Rice’s Theorem: If P is nontrivial and semantic, then $L = \{M \mid P(M) = 1\}$ is undecidable.

Proof: Either reduce A_{TM} or $\neg A_{TM}$ to the language L

Define M_{\emptyset} to be a TM such that $L(M_{\emptyset}) = \emptyset$

Case 1: $P(M_{\emptyset}) = 0$

Since P is nontrivial, there’s M_{YES} such that $P(M_{\text{YES}}) = 1$

Reduction from A_{TM} to L On input (M,w), output:

“$M_w(x) := \text{If } ((M \text{ accepts } w) \& (M_{\text{YES}} \text{ accepts } x)) \text{ then ACCEPT, else REJECT}”$

If M accepts w, then $L(M_w) = L(M_{\text{YES}})$

Since $P(M_{\text{YES}}) = 1$, we have $P(M_w) = 1$ and $M_w \in L$

If M does not accept w, then $L(M_w) = L(M_{\emptyset}) = \emptyset$

Since $P(M_{\emptyset}) = 0$, we have $M_w \not\in L$
Rice’s Theorem: If P is nontrivial and semantic, then $L = \{M \mid P(M) = 1\}$ is undecidable.

Proof: Either reduce A_{TM} or $\neg A_{TM}$ to the language L

Define M_\emptyset to be a TM such that $L(M_\emptyset) = \emptyset$

Case 2: $P(M_\emptyset) = 1$

Since P is nontrivial, there’s M_{NO} such that $P(M_{NO}) = 0$

Reduction from $\neg A_{TM}$ to L On input (M,w), output:

"$M_w(x) := \text{If } ((M \text{ accepts } w) \& (M_{NO} \text{ accepts } x)) \text{ then ACCEPT, else REJECT}"

If M does not accept w, then $L(M_w) = L(M_\emptyset) = \emptyset$ Since $P(M_\emptyset) = 1$, we have $M_w \in L$

If M accepts w, then $L(M_w) = L(M_{NO})$

Since $P(M_{NO}) = 0$, we have $M_w \notin L$
The Regularity Problem for Turing Machines

\[\text{REGULAR}_{\text{TM}} = \{ M \mid M \text{ is a TM and } L(M) \text{ is regular} \} \]

Given a program, is it equivalent to some DFA?

Theorem: \(\text{REGULAR}_{\text{TM}} \) is not recognizable

Proof: Use Rice’s Theorem!

\(\text{P}(M) := \text{“}L(M)\text{ is regular}\) is nontrivial:

- there’s an \(M_{\emptyset} \) such that \(L(M_{\emptyset}) = \emptyset \): \(\text{P}(M_{\emptyset}) = 1 \)
- there’s an \(M' \) deciding \(\{0^n1^n \mid n \geq 0\} \): \(\text{P}(M') = 0 \)

\(\text{P} \) is also semantic:

If \(L(M) = L(M') \) then \(L(M) \) is regular iff \(L(M') \) is regular, so \(\text{P}(M) = 1 \) iff \(\text{P}(M') = 1 \), so \(\text{P}(M) = \text{P}(M') \)

By Rice’s Thm, we have \(\neg A_{\text{TM}} \leq_m \text{REGULAR}_{\text{TM}} \)
Definition: A decidable predicate \(R(x,y) \) is a proposition about the input strings \(x \) and \(y \), such that some TM \(M \) implements \(R \). That is, for all \(x, y \),
\[
\text{\(R(x,y) \) is TRUE } \Rightarrow \text{\(M(x,y) \) accepts}
\]
\[
\text{\(R(x,y) \) is FALSE } \Rightarrow \text{\(M(x,y) \) rejects}
\]

Can think of \(R \) as a function from \(\Sigma^* \times \Sigma^* \rightarrow \{T,F\} \)

Examples:
\(R(x,y) = \text{“} xy \text{ has at most 100 zeroes”} \)
\(R(N,y) = \text{“} TM N \text{ halts on } y \text{ in at most 99 steps”} \)
Theorem: A language A is \textit{recognizable} if and only if there is a decidable predicate $R(x, y)$ such that: $A = \{ x \mid \exists y \ R(x, y) \}$

Proof:

(1) If $A = \{ x \mid \exists y \ R(x,y) \}$ then A is recognizable

Define the TM $M(x)$: Enumerate all finite-length strings y, If $R(x,y)$ is true, accept $\Rightarrow M$ accepts exactly those x s.t. $\exists y \ R(x,y)$ is true

(2) If A is recognizable, then there is a decidable predicate $R(x, y)$ such that: $A = \{ x \mid \exists y \ R(x,y) \}$

Suppose TM M recognizes A. Let $R(x,y)$ be TRUE iff M accepts x in $|y|$ steps $\Rightarrow M$ accepts $x \Leftrightarrow \exists y \ R(x,y)$
Oracle Turing Machines, Turing Reductions and Hierarchies
Oracle Turing Machines

Is \((M, w)\) in \(A_{TM}\)?

yes

FINITE STATE CONTROL

INFINITE REWRITABLE TAPE
Oracle Turing Machines

An oracle Turing machine M that can ask membership queries in a set $B \subseteq \Gamma^*$ on a special “oracle tape” [Formally, M enters a special state q_b]

The TM receives an answer to the query in one step[Formally, the transition function on q_b is defined in terms of the entire oracle tape: if the string y written on the oracle tape is in B, then state q_b is changed to q_{YES}, otherwise q_{NO}]

This notion makes sense even if B is not decidable!
How to Think about Oracles?

A black-box subroutine. In terms of Turing Machine pseudocode: An oracle Turing machine M with oracle $B \subseteq \Gamma^*$ lets you include the following kind of branching instructions:

```
“if (z in B) then <do something>
    else <do something else>”
```

where z is some string defined earlier in pseudocode.

By definition, the oracle TM can always check the condition $(z \text{ in } B)$ in one step

This notion makes (mathematical) sense even if B is not decidable.
Definition: A is recognizable with B if there is an oracle TM M with oracle B that recognizes A.

Definition: A is decidable with B if there is an oracle TM M with oracle B that decides A.

Language A “Turing-Reduces” to B.

$A \leq_T B$
A_{TM} is decidable with HALT_{TM} ($A_{TM} \leq_T \text{HALT}_{TM}$)

We can decide if M accepts w using an ORACLE for the Halting Problem:

On input (M,w),
 If (M,w) is in HALT_{TM} then
 run $M(w)$ and output its answer.
 else REJECT.
HALT$_{TM}$ is decidable with A_{TM} (HALT$_{TM}$ $\leq_T A_{TM}$)

On input (M,w), decide if M halts on w as follows:

1. If (M,w) is in A_{TM} then ACCEPT

2. Else, switch the accept and reject states of M to get a machine M'. If (M',w) is in A_{TM} then ACCEPT

3. REJECT
Theorem: If $A \leq_m B$ then $A \leq_T B$

Proof (Sketch):

If $A \leq_m B$ then there is a computable function $f : \Sigma^* \to \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$

To decide A on the string w, just compute $f(w)$ and “call the oracle” for B

Theorem: $\neg\text{HALT}_{TM} \leq_T \text{HALT}_{TM}$

Theorem: $\neg\text{HALT}_{TM} \not\leq_m \text{HALT}_{TM}$

Why?
Limitations on Oracle TMs!

The following problem cannot be decided by any TM with an oracle for the Halting Problem:

\[\text{SUPERHALT} = \{ (M,x) \mid M, \text{ with an oracle for the Halting Problem, halts on } x \} \]

We can use the proof by diagonalization!

Assume \(H \) (with \(\text{HALT} \) oracle) decides \(\text{SUPERHALT} \)

Define \(D(X) := \text{"if } H(X,X) \text{ (with } \text{HALT} \text{ oracle) accepts then LOOP, else ACCEPT."} \) (\(D \) uses a \(\text{HALT} \) oracle to simulate \(H \))

But \(D(D) \) halts \(\iff \) \(H(D,D) \) accepts \(\iff \) \(D(D) \) loops...

(by assumption) \hspace{1cm} (by def of \(D \))
Limits on Oracle TMs

“Theorem” There is an infinite hierarchy of unsolvable problems!

Given ANY oracle O, there is always a harder problem that cannot be decided with that oracle O

$\text{SUPERHALT}^0 = \text{HALT} = \{ (M,x) | M \text{ halts on } x \}.$

$\text{SUPERHALT}^1 = \{ (M,x) | M, \text{ with an oracle for } \text{HALT}_{\text{TM}}, \text{ halts on } x \}$

$\text{SUPERHALT}^n = \{ (M,x) | M, \text{ with an oracle for } \text{SUPERHALT}^{n-1}, \text{ halts on } x \}$
\[
\sum_1^0 \Delta_1^0 \subseteq \sum_2^0 \cap \Pi_2^0 \subseteq \Lambda_{TM} \subseteq \Delta_2^0 \cap \Pi_2^0 \subseteq \Delta_3^0 \subseteq \Pi_3^0
\]

Decidable languages

Co-R.E. Languages