Definition: A language B is NP-complete if:

1. $B \in \text{NP}$

2. Every A in NP is poly-time reducible to B
 That is, $A \leq_p B$

When this is true, we say “B is NP-hard”

On homework, you showed
A language L is recognizable iff $L \leq_m A_{\text{TM}}$

A_{TM} is “complete for recognizable languages”:
A_{TM} is recognizable, and for all recognizable L, $L \leq_m A_{\text{TM}}$
Suppose L is NP-Complete...

If $L \in P$, then $P = NP$

If $L \notin P$, then $P \neq NP$
Suppose L is NP-Complete...

Then assuming the conjecture $P \neq NP$,

L is not decidable in n^k time, for every k
The Cook-Levin Theorem: SAT and 3SAT are NP-complete

1. **3SAT \(\in\) NP

 A satisfying assignment is a “proof” that a 3cnf formula is satisfiable

2. **3SAT is NP-hard**

 Every language in NP can be polynomial-time reduced to 3SAT (complex logical formula)

Corollary: \(3\text{SAT} \in \text{P if and only if } \text{P} = \text{NP}\)
Theorem (Cook-Levin): 3SAT is NP-complete

Proof Idea:

(1) \(3\text{SAT} \in \text{NP} \) (done)

(2) Every language \(A \) in \(\text{NP} \) is polynomial time reducible to \(3\text{SAT} \) (this is the challenge)

We give a poly-time reduction from \(A \) to \(\text{SAT} \)

The reduction converts a string \(w \) into a 3cnf formula \(\phi \) such that \(w \in A \) iff \(\phi \in 3\text{SAT} \)

For any \(A \in \text{NP} \), let \(N \) be a nondeterministic TM deciding \(A \) in \(n^k \) time

\(\phi \) will simulate \(N \) on \(w \)
Deterministic Computation

Nondeterministic Computation

accept or reject

\(n^k \)

\(\exp(n^k) \)
Let $L(N) \in \text{NTIME}(n^k)$. A tableau for N on w is an $n^k \times n^k$ table whose rows are the configurations of some possible computation history of N on w.

Each “cell” contains an element $\sigma \in Q \cup \Gamma \cup \{\#\}$.
A tableau is accepting if the last row of the tableau is an accepting configuration.

N accepts w if and only if there is an accepting tableau for N on w.

Given w, we’ll construct a 3cnf formula ϕ with $O(|w|^{2k})$ clauses, describing logical constraints that any accepting tableau for N on w must satisfy.

The 3cnf formula ϕ will be satisfiable if and only if there is an accepting tableau for N on w.
Variables of formula ϕ will encode a tableau

Let $C = Q \cup \Gamma \cup \{\#\}$

Each of the $(n^k)^2$ entries of a tableau is a cell containing value in C

$cell[i,j] = \text{value of the cell at row } i \text{ and column } j$

$= \text{the } j\text{th symbol in the } i\text{th configuration}$

For every i and j ($1 \leq i, j \leq n^k$) and for every $s \in C$ we have a Boolean variable $x_{i,j,s}$ in ϕ

Total number of variables $= |C|n^{2k}$, which is $O(n^{2k})$

These $x_{i,j,s}$ are the variables of ϕ and represent the contents of the cells

We will have: for all i,j,s, $x_{i,j,s} = 1 \iff cell[i,j] = s$
Idea: Make ϕ so that every satisfying assignment to the variables $x_{i,j,s}$ corresponds to an accepting tableau for N on w (an assignment to all cell[i,j]'s of the tableau).

The formula ϕ will be the AND of four CNF formulas:

$$
\phi = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{accept}} \land \phi_{\text{move}}
$$

ϕ_{cell} : for all i, j, there is a unique $s \in C$ with $x_{i,j,s} = 1$

ϕ_{start} : the first row of the table equals the start configuration of N on w

ϕ_{accept} : the last row of the table has an accept state

ϕ_{move} : every row is a configuration that yields the configuration on the next row
ϕ_{cell}: for all i, j, there is a unique $s \in C$ with $x_{i,j,s} = 1$

\[
\phi_{cell} = \bigwedge_{1 \leq i, j \leq n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{s,t \in C} (x_{i,j,s} \lor \neg x_{i,j,t}) \right) \right] \\
\text{for all } i, j \quad \text{at least one } \quad x_{i,j,s} \text{ is set to } 1 \quad \text{at most one } \quad x_{i,j,s} \text{ is set to } 1
\]
\[\phi_{\text{start}} : \text{the first row of the table equals the start configuration of } N \text{ on } w \]

\[\phi_{\text{start}} = X_{1,1,\#} \land X_{1,2,q_0} \land \]

\[X_{1,3,w_1} \land X_{1,4,w_2} \land \ldots \land X_{1,n+2,w_n} \land \]

\[X_{1,n+3,\square} \land \ldots \land X_{1,n^k-1,\square} \land X_{1,n^k,\#} \]
ϕ_{accept} : the last row of the table has an accept state

$\phi_{\text{accept}} = \bigvee_{1 \leq j \leq n^k} x_{n^j, j, q_{\text{accept}}}$
\(\phi_{\text{move}} \): every row is a configuration that yields the configuration on the next row

Key Question: If one row yields the next row, how many cells can be different between the two rows?

Answer: at most three cells
\[\phi_{\text{move}} : \text{every row is a configuration that yields the configuration on the next row} \]

Idea: check that every 2×3 “window” of cells is legal (consistent with the transition function of N)

<table>
<thead>
<tr>
<th></th>
<th>q_0</th>
<th>w_1</th>
<th>w_2</th>
<th>\ldots</th>
<th>w_n</th>
<th>\square</th>
<th>\ldots</th>
<th>\square</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

[Diagram of a 2×3 window with cells shaded yellow]
Example: Let $N = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$
Suppose $a, b, c \in \Gamma$, $q_1, q_2 \in Q$ and
\[
\delta(q_1, a) = \{ (q_1, b, R) \} \\
\delta(q_1, b) = \{ (q_2, c, L), (q_2, a, R) \}
\]

Legal = Consistent with N’s transition function

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>q₁</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>q₂</td>
<td>a</td>
<td>c</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>q₁</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>q₂</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>#</th>
<th>b</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>b</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>q₁</td>
<td>q₂</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>b</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Illegal = Inconsistent with N’s transition function

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>q₁</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>q₁</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>q₁</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>q₂</td>
<td>b</td>
<td>q₂</td>
<td>q₂</td>
</tr>
</tbody>
</table>
Key Lemma:
IF Every window of the tableau is legal, and
 The top row is the start configuration
THEN Each row of the tableau is a configuration that yields the
next row on the tableau

Proof Sketch: (Strong) induction on the rows.
The top row is a configuration. If it does not yield the next row, then there is a 2×3 window that is “illegal”
Suppose the first $1,...,k$ rows are configurations which yield the next, and assume every window is legal.
If row $k+1$ did not yield row $k+2$, then there must be a 2×3 window along those two rows which is “illegal” – contradiction.
The \((i, j)\) window of a tableau is the tuple \((a_1, \ldots, a_6) \in \mathbb{C}^6\) such that:

<table>
<thead>
<tr>
<th>row i</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>row (i+1)</td>
<td>(a_4)</td>
<td>(a_5)</td>
<td>(a_6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>col. (j)</th>
<th>col. (j+1)</th>
<th>col. (j+2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>(a_2)</td>
<td>(a_3)</td>
</tr>
<tr>
<td>(a_4)</td>
<td>(a_5)</td>
<td>(a_6)</td>
</tr>
</tbody>
</table>
\(\phi_{\text{move}} : \) every row is a configuration that legally follows from the previous configuration

\[
\phi_{\text{move}} = \bigwedge_{1 \leq i \leq n^k-1} \bigwedge_{1 \leq j \leq n^k-2} (\text{the } (i, j) \text{ window is legal})
\]

\[
\bigvee_{(a_1, \ldots, a_6)} \left(x_{i,j,a_1} \land x_{i,j+1,a_2} \land x_{i,j+2,a_3} \land x_{i+1,j,a_4} \land x_{i+1,j+1,a_5} \land x_{i+1,j+2,a_6} \right)
\]

\((a_1, \ldots, a_6)\) is a legal window

\[
\equiv \bigwedge_{(a_1, \ldots, a_6)} \left(x_{i,j,a_1} \lor x_{i,j+1,a_2} \lor x_{i,j+2,a_3} \lor x_{i+1,j,a_4} \lor x_{i+1,j+1,a_5} \lor x_{i+1,j+2,a_6} \right)
\]

\((a_1, \ldots, a_6)\) is NOT a legal window
How do we get 3SAT?

We had some long clauses in there... how do we convert the whole thing into a 3-cnf formula?

Everything was an AND of ORs (a CNF). We just need to make those ORs small

\[(a_1 \lor a_2 \lor \ldots \lor a_t) \text{ is equivalent to} \]
\[(a_1 \lor a_2 \lor z_1) \land (\neg z_1 \lor a_3 \lor z_2) \land (\neg z_2 \lor a_4 \lor z_3) \ldots \land (\neg z_{t-3} \lor a_{t-1} \lor a_t)\]

(SAT is polynomial time reducible to 3SAT)
What's the total length of ϕ?

$$\phi = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{accept}} \land \phi_{\text{move}}$$

- $O(n^{2k})$ clauses
- $O(n^k)$ clauses
- $O(n^k)$ clauses
- $O(n^{2k})$ clauses
Summary. We wanted to prove:
Every A in NP has a polynomial time reduction to 3SAT

For every A in NP, we know A is decided by some nondeterministic n^k-time Turing machine N

We gave a generic method to reduce (N, w) to a 3CNF formula ϕ of $O(|w|^{2k})$ clauses such that satisfying assignments to the variables of ϕ directly correspond to accepting computation histories of N on w

The formula ϕ is the AND of four 3CNF formulas:
$\phi = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{accept}} \land \phi_{\text{move}}$
Reading Assignment

Read Luca Trevisan’s notes for an alternative proof of the Cook-Levin Theorem

Sketch:
1. Define CIRCUIT-SAT: Given a logical circuit \(C(y) \), is there an input \(a \) such that \(C(a) = 1 \)?
2. Show that CIRCUIT-SAT is NP-hard: The \(n^k \times n^k \) tableau for \(N \) on \(w \) can be simulated using a logical circuit of \(O(n^{2k}) \) gates
3. Reduce CIRCUIT-SAT to 3SAT in polytime
4. Conclude 3SAT is also NP-hard
Theorem (Cook-Levin):
SAT and 3SAT are NP-complete

Corollary: SAT \in P if and only if P = NP
Is 3SAT solvable in $O(n)$ time on a multitape TM?

Are there logic circuits of size $6n$ for 3SAT?

If yes, then not only is P=NP, but there would be a “dream machine” that could crank out short proofs of theorems, quickly optimize all aspects of life...

recognizing quality work is all you need to produce
There are thousands of NP-complete problems

Your favorite topic certainly has an NP-complete problem somewhere in it

Even the other sciences are not safe: biology, chemistry, physics have NP-complete problems too!
Given a favorite problem $\Pi \in \text{NP}$, how can we prove it is NP-hard?

Generic Recipe:
1. Take a problem Σ that you know to be NP-hard (3-SAT)
2. Prove that $\Sigma \leq_p \Pi$

Then for all $A \in \text{NP}$, $A \leq_p \Sigma$ and $\Sigma \leq_p \Pi$
We conclude that $A \leq_p \Pi$, and Π is NP-hard
Π is NP-Complete
The Clique Problem

Given a graph G and positive k, does G contain a complete subgraph on k nodes?

CLIQUE = $\{ (G,k) \mid G$ is an undirected graph with a k-clique $\}$

Theorem (Karp): CLIQUE is NP-complete
Proof Idea: $3\text{SAT} \leq_p \text{CLIQUE}$

Transform a 3-cnf formula ϕ into (G,k) such that

$\phi \in 3\text{SAT} \iff (G,k) \in \text{CLIQUE}$

Want transformation that can be done in time that is polynomial in the length of ϕ

How can we encode a logic problem as a graph problem?
3SAT \leq_p CLIQUE

We transform a 3-cnf formula ϕ into (G, k) such that

$$\phi \in 3\text{SAT} \iff (G, k) \in \text{CLIQUE}$$

Let $C_1, C_2, ..., C_m$ be clauses of ϕ. Assign $k := m$. Make a graph G with m groups of 3 nodes each.

Group i corresponds to clause C_i of ϕ. Each node in group i is labeled with a literal of C_i.

Put edges between all pairs of nodes in different groups, except pairs of nodes with labels x_i and $-x_i$.

Put no edges between nodes in the same group.

When done putting in all the edges, erase the labels.
\((x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)\)

\(|V| = 9\) \hspace{1cm} k = 3
\[(x_1 \lor x_1 \lor x_1) \land (\neg x_1 \lor \neg x_1 \lor x_2) \land (x_2 \lor x_2 \lor x_2) \land (\neg x_2 \lor \neg x_2 \lor x_1)\]
Claim: \(\phi \in 3\text{SAT} \iff (G,m) \in \text{CLIQUE} \)

Claim: If \(\phi \in 3\text{SAT} \) then \((G,m) \in \text{CLIQUE} \)

Proof: Given a SAT assignment \(A \) of \(\phi \), for every clause \(C \) there is at least one literal in \(C \) that’s set true by \(A \)

For each clause \(C \), let \(v_C \) be a vertex from group \(C \) whose label is a literal that is set true by \(A \)

Claim: \(S = \{v_C : C \in \phi\} \) is an \(m \)-clique

Proof: Let \(v_C,v_C' \) be in \(S \). Suppose \((v_C,v_C') \notin E \).

Then \(v_C \) and \(v_C' \) must label inconsistent literals, call them \(x \) and \(\neg x \)

But assignment \(A \) cannot satisfy both \(x \) and \(\neg x \)

Therefore \((v_C,v_C') \in E \), for all \(v_C,v_C' \in S \).

Hence \(S \) is an \(m \)-clique, and \((G,m) \in \text{CLIQUE} \)
Claim: $\phi \in 3\text{SAT} \iff (G,m) \in \text{CLIQUE}$

Claim: If $(G,m) \in \text{CLIQUE}$ then $\phi \in 3\text{SAT}$
Proof: Let S be an m-clique of G. We construct a satisfying assignment A of ϕ.

Claim: S contains exactly one node from each group.

Now for each variable x of ϕ, make assignment A:
Assign x to 1 \iff There is a vertex $v \in S$ with label x

For all $i = 1,\ldots,m$, at least one vertex from group i is in S. Therefore, for all $i = 1,\ldots,m$. A satisfies at least one literal in the ith clause of ϕ. Therefore A is a satisfying assignment to ϕ.