CS154, Lecture 16:
More NP-Complete Problems; PCPs
Is 3SAT solvable in $O(n)$ time on a multitape TM?

Are there logic circuits of size $6n$ for 3SAT?

If yes, then not only is P=NP, but there would be a “dream machine” that could crank out short proofs of theorems, quickly optimize all aspects of life...

recognizing quality work is all you need to produce
There are thousands of NP-complete problems

Your favorite topic certainly has an NP-complete problem somewhere in it

Even the other sciences are not safe: biology, chemistry, physics have NP-complete problems too!
Given a favorite problem $\Pi \in \text{NP}$, how can we prove it is NP-hard?

Generic Recipe:
1. Take a problem Σ that you know to be NP-hard (3-SAT)
2. Prove that $\Sigma \leq_p \Pi$

Then for all $A \in \text{NP}, A \leq_p \Sigma$ and $\Sigma \leq_p \Pi$

We conclude that $A \leq_p \Pi$, and Π is NP-hard
\(\Pi \) is NP-Complete
The Clique Problem

Given a graph G and positive k, does G contain a complete subgraph on k nodes?

CLIQUE = $\{(G,k) \mid G$ is an undirected graph with a k-clique $\}$

Theorem (Karp): CLIQUE is NP-complete
Proof Idea: \(3\text{SAT} \leq_p \text{CLIQUE}\)

Transform a 3-cnf formula \(\phi\) into \((G,k)\) such that

\[
\phi \in 3\text{SAT} \iff (G,k) \in \text{CLIQUE}
\]

Want transformation that can be done in time that is polynomial in the length of \(\phi\)

How can we encode a logic problem as a graph problem?
3SAT ≤ₚ CLIQUE

We transform a 3-cnf formula ϕ into (G,k) such that

$$\phi \in 3\text{SAT} \iff (G,k) \in \text{CLIQUE}$$

Let $C_1, C_2, ..., C_m$ be clauses of ϕ. Assign $k := m$. Make a graph G with m groups of 3 nodes each.

Group i corresponds to clause C_i of ϕ. Each node in group i is labeled with a literal of C_i.

Put edges between all pairs of nodes in different groups, except pairs of nodes with labels x_i and $\neg x_i$.

Put no edges between nodes in the same group.

When done putting in all the edges, erase the labels.
\((x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)\)

\(|V| = 9 \quad \text{and} \quad k = 3\)
\((x_1 \lor x_1 \lor x_1) \land (\neg x_1 \lor \neg x_1 \lor x_2) \land (x_2 \lor x_2 \lor x_2) \land (\neg x_2 \lor \neg x_2 \lor x_1)\)
Claim: $\phi \in 3\text{SAT} \iff (G,m) \in \text{CLIQUE}$

Claim: If $\phi \in 3\text{SAT}$ then $(G,m) \in \text{CLIQUE}$
Proof: Given a SAT assignment A of ϕ, for every clause C there is at least one literal in C that’s set true by A
For each clause C, let v_C be a vertex from group C whose label is a literal that is set true by A

Claim: $S = \{v_C : C \in \phi\}$ is an m-clique
Proof: Let v_C, v_C' be in S. Suppose $(v_C, v_C') \notin E$.
Then v_C and v_C' must label inconsistent literals, call them x and $\neg x$.
But assignment A cannot satisfy both x and $\neg x$.
Therefore $(v_C, v_C') \in E$, for all $v_C, v_C' \in S$.
Hence S is an m-clique, and $(G,m) \in \text{CLIQUE}$
Claim: $\phi \in \text{3SAT} \iff (G,m) \in \text{CLIQUE}$

Claim: If $(G,m) \in \text{CLIQUE}$ then $\phi \in \text{3SAT}$

Proof: Let S be an m-clique of G. We construct a satisfying assignment A of ϕ.

Claim: S contains exactly one node from each group.

Now for each variable x of ϕ, make assignment A:

Assign x to 1 \iff There is a vertex $v \in S$ with label x

For all $i = 1,\ldots,m$, at least one vertex from group i is in S. Therefore, for all $i = 1,\ldots,m$. A satisfies at least one literal in the ith clause of ϕ. Therefore A is a satisfying assignment to ϕ.

Independent Set

IS: Given a graph $G = (V, E)$ and integer k, is there $S \subseteq V$ such that $|S| = k$ and no two vertices in S have an edge?

$\text{IS} = \{(G, k) \mid G \text{ is an undirected graph with an IS of size } k\}$

CLIQUE: Given $G = (V, E)$ and integer k, is there $S \subseteq V$ such that $|S| = k$ and every pair of vertices in S have an edge?

$\text{CLIQUE} \leq_p \text{IS}$:
Given $G = (V, E)$, output $G' = (V, E')$ where $E' = \{(u,v) \mid (u,v) \notin E\}$.

$(G, k) \in \text{CLIQUE}$ iff $(G', k) \in \text{IS}$
The Vertex Cover Problem

vertex cover - set of nodes C that cover all edges:
For all edges, at least one endpoint is in C
\textsc{Vertex-Cover} = \{(G,k) \mid G \text{ is a graph with a vertex cover of size at most } k\}

Theorem: \textsc{Vertex-Cover} is NP-Complete

(1) \textsc{Vertex-Cover} \in \text{NP}

(2) IS \leq_p \textsc{Vertex-Cover}
$\text{IS} \leq_p \text{VERTEX-COVER}$

Want to transform a graph G and integer k into G' and k' such that

$$(G,k) \in \text{IS} \iff (G',k') \in \text{VERTEX-COVER}$$
IS \leq_p \textsc{Vertex-Cover}

Claim: For every graph \(G = (V,E) \), and subset \(S \subseteq V \), \(S \) is an independent set if and only if \((V - S) \) is a vertex cover.

Proof: \(S \) is an independent set

\[\Leftrightarrow \forall u, v \in V \left[(u \in S \text{ and } v \in S) \Rightarrow (u,v) \notin E \right] \]

\[\Leftrightarrow \forall u, v \in V \left[(u,v) \in E \Rightarrow (u \notin S \text{ or } v \notin S) \right] \]

\(\Leftrightarrow (V - S) \) is a vertex cover

Therefore \((G,k) \in \text{IS} \Leftrightarrow (G,|V| - k) \in \text{VERTEX-COVER} \)

Our polynomial time reduction: \(f(G,k) := (G, |V| - k) \)
The Subset Sum Problem

Given: Set \(S = \{a_1, ..., a_n\} \) of positive integers and a positive integer \(t \)

Is there an \(A \subseteq \{1, ..., n\} \) such that \(t = \sum_{i \in A} a_i \)?

\text{SUBSET-SUM} = \{ (S, t) \mid \exists A \subseteq S \text{ s.t. } t = \sum_{i \in A} a_i \} \)

A simple number-theoretic problem

Theorem: \text{SUBSET-SUM} is NP-complete

Note: There is an \(O(n \cdot t) \) time algorithm for Subset Sum. Does this prove \(P=NP? \)
VC ≤ₚ SUBSET-SUM

Want to reduce a graph to a set of numbers

Given \((G, k)\), let \(E = \{e_0, \ldots, e_{m-1}\}\) and \(V = \{1, \ldots, n\}\)

Our subset sum instance \((S, t)\) will have \(|S| = n + m\)

“Edge numbers”: For every \(e_j \in E\), put \(b_j = 4^j\) in \(S\)

“Node numbers”: For every \(i \in V\), put \(a_i = 4^m + \sum_{j: i \in e_j} 4^j\) in \(S\)

Set the target number: \(t = k \cdot 4^m + \sum_{j=0}^{m-1} (2 \cdot 4^j)\)
For every $e_j \in E$, put $b_j = 4^j$ in S
For every $i \in V$, put $a_i = 4^m + \sum_{j: i \in e_j} 4^j$ in S
Set the target number: $t = k \cdot 4^m + \sum_{j=0}^{m-1} (2 \cdot 4^j)$

Claim: If $(G,k) \in VC$ then $(S,t) \in SUBSET\text{-}SUM$
Suppose $C \subseteq V$ is a VC with k vertices.
Let $S' = \{a_i : i \in C\} \cup \{b_j : |e_j \setminus C| = 1\}$
$S' = (node \ numbers \ corresponding \ to \ nodes \ in \ C) \ plus$
\hspace{1cm} (edge \ numbers \ corresponding \ to \ edges \ covered \ only \ once \ by \ C)$

Claim: The sum of all numbers in S' equals t

Think of the numbers as being in “base 4”... as vectors with $m+1$
components
For every $e_j \in E$, put $b_j = 4^j$ in S
For every $i \in V$, put $a_i = 4^m + \sum_{j: i \in e_j} 4^j$ in S
Set the target number: $t = k \cdot 4^m + \sum_{j=0}^{m-1} (2 \cdot 4^j)$

Claim: If $(S,t) \in \text{SUBSET-SUM}$ then $(G,k) \in VC$
Suppose $C \subseteq V$ and $F \subseteq E$ satisfy
$$\sum_{i \in C} a_i + \sum_{e_j \in F} b_j = t = k \cdot 4^m + \sum_{j=0}^{m-1} (2 \cdot 4^j)$$

Claim: C is a vertex cover of size k.
Proof: Subtract out the b_j numbers from the above sum. What remains is a sum of the form:
$$\sum_{i \in C} a_i = k \cdot 4^m + \sum_{j=0}^{m-1} (c_j \cdot 4^j)$$
where each $c_j > 0$. But c_j = number of nodes in C covering e_j
This implies C is a vertex cover!
Finding Paths - Two Problems

Let G denote a graph, and s and t denote nodes.

SHORTEST PATH
\[= \{(G, s, t, k) \mid G \text{ has a simple path of length } < k \text{ from } s \text{ to } t \}\]

LONGEST PATH
\[= \{(G, s, t, k) \mid G \text{ has a simple path of length } > k \text{ from } s \text{ to } t \}\]

Are either of these in P? Are both of them?
HAMPATH = \{ (G,s,t) \mid G \text{ is an directed graph with a Hamiltonian path from } s \text{ to } t \}\}

Theorem: HAMPATH is NP-Complete

(1) HAMPATH ∈ NP

(2) \text{3SAT} \leq_p \text{HAMPATH}

See Sipser for the proof
HAMPATH \leq_p LONGEST-PATH

LONGEST-PATH = \{(G, s, t, k) \mid G \text{ has a simple path of length } k \text{ from } s \text{ to } t \}

Can reduce HAMPATH to LONGEST-PATH by observing:

\((G, s, t) \in \text{ HAMPATH} \iff (G, s, t, |V|) \in \text{ LONGEST-PATH}\)

Therefore LONGEST-PATH is NP-hard.
Coping with NP-Completeness [Advanced Topics]

There are thousands of NP-complete problems

Many are solved all the time !?!

Average Case vs. Worst Case; Heuristics vs. Algorithms [Beyond Worst-Case Analysis (CS264)]

Special cases/parameters that make a problem easy

Approximation Algorithms
Approximating Vertex Cover

Vertex Cover = set of nodes that cover all edges. Minimization problem: find the smallest VC

A very simple (greedy) approximation algorithm A: finds a VC that is at most twice as large as the optimal (a 2-approximation).

Algorithm: Set $C=\emptyset$ and while there exist uncovered edge e, add both endpoints of such e to C

Why does it work?