Moral: Analyzing Programs is Really, Really Hard

But can we more easily tell when some “program analysis” problem is undecidable?
Problem 1 Undecidable
{(M, w) | M is a TM that on input w, tries to move its head past the left end of the input }

Problem 2 Decidable
{(M, w) | M is a TM that on input w, moves its head left at least once, at some point}
Problem 1 Undecidable

$L' = \{ (M, w) | M \text{ is a TM that on input } w, \text{ tries to move its head past the left end of the input } \}$

Proof: Reduce A_{TM} to L'

On input (M, w), make a TM N that shifts w over one cell, marks a special symbol $\$\$ on the leftmost cell, then simulates $M(w)$ on the tape.
If M’s head moves to the cell with $\$\$ but has not yet accepted, N moves the head back to the right.
If M accepts, N tries to move its head past the $\$\$.

(M, w) is in A_{TM} if and only if (N, w) is in L'
Problem 2 Decidable

\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ moves its head left at least once, at some point} \}

On input \((M, w)\), run \(M\) on \(w\) for \(|Q| + |w| + 1\) steps,
where \(|Q| = \text{number of states of } M\).

Accept If \(M\)'s head moved left at all
Reject Otherwise

(Why does this work?)
Problem 3

REVERSE = \{ M | M \text{ is a TM with the property: for all } w, M(w) \text{ accepts } \Leftrightarrow M(w^R) \text{ accepts} \}.

Decidable or not?

REVERSE is undecidable.
Rice’s Theorem

Let $P : \{\text{Turing Machines}\} \to \{0,1\}$.
(Think of 0=false, 1=true) Suppose P satisfies:

1. (Nontrivial) There are TMs M_{YES} and M_{NO} where $P(M_{\text{YES}}) = 1$ and $P(M_{\text{NO}}) = 0$

2. (Semantic) For all TMs M_1 and M_2, If $L(M_1) = L(M_2)$ then $P(M_1) = P(M_2)$

Then, $L = \{M \mid P(M) = 1\}$ is undecidable.

A Huge Hammer for Undecidability!
<table>
<thead>
<tr>
<th>Semantic Properties $P(M)$</th>
<th>Not Semantic!</th>
</tr>
</thead>
<tbody>
<tr>
<td>• M accepts 0</td>
<td>• M halts and rejects 0</td>
</tr>
<tr>
<td>• for all w, $M(w)$ accepts iff $M(w^R)$ accepts</td>
<td>• M tries to move its head off the left end of the tape, on input 0</td>
</tr>
<tr>
<td>• $L(M) = {0}$</td>
<td>• M never moves its head left on input 0</td>
</tr>
<tr>
<td>• $L(M)$ is empty</td>
<td>• M has exactly 154 states</td>
</tr>
<tr>
<td>• $L(M) = \Sigma^*$</td>
<td>• M halts on all inputs</td>
</tr>
<tr>
<td>• M accepts 154 strings</td>
<td></td>
</tr>
</tbody>
</table>

$L = \{M \mid P(M) \text{ is true}\}$ is undecidable

There are M_1 and M_2 such that $L(M_1) = L(M_2)$ and $P(M_1) \neq P(M_2)$
Rice’s Theorem: If P is nontrivial and semantic, then $L = \{M \mid P(M) = 1\}$ is undecidable.

Proof: Either reduce A_{TM} or $\neg A_{TM}$ to the language L

Define M_{\emptyset} to be a TM such that $L(M_{\emptyset}) = \emptyset$

Case 1: $P(M_{\emptyset}) = 0$

Since P is nontrivial, there’s M_{YES} such that $P(M_{YES}) = 1$

Reduction from A_{TM} to L

On input (M,w), output: “$M_w(x) := \text{If } ((M \text{ accepts } w) \& (M_{YES} \text{ accepts } x)) \text{ then ACCEPT, else REJECT}”$

If M accepts w, then $L(M_w) = L(M_{YES})$

Since $P(M_{YES}) = 1$, we have $P(M_w) = 1$ and $M_w \in L$

If M does not accept w, then $L(M_w) = L(M_{\emptyset}) = \emptyset$

Since $P(M_{\emptyset}) = 0$, we have $M_w \notin L$
Rice’s Theorem: If P is nontrivial and semantic, then $L = \{M \mid P(M) = 1\}$ is undecidable.

Proof: Either reduce A_{TM} or $\neg A_{TM}$ to the language L
Define M_\emptyset to be a TM such that $L(M_\emptyset) = \emptyset$
Case 2: $P(M_\emptyset) = 1$
Since P is nontrivial, there’s M_{NO} such that $P(M_{NO}) = 0$

Reduction from $\neg A_{TM}$ to L On input (M, w), output:
“$M_w(x) := \text{If } ((M \text{ accepts } w) \& (M_{NO} \text{ accepts } x)) \text{ then ACCEPT, else REJECT}”$
If M does not accept w, then $L(M_w) = L(M_\emptyset) = \emptyset$ Since $P(M_\emptyset) = 1$, we have $M_w \in L$
If M accepts w, then $L(M_w) = L(M_{NO})$
Since $P(M_{NO}) = 0$, we have $M_w \notin L$
The Regularity Problem for Turing Machines

\[\text{REGULAR}_{\text{TM}} = \{ M \mid M \text{ is a TM and } L(M) \text{ is regular} \} \]

Given a program, is it equivalent to some DFA?

Theorem: \(\text{REGULAR}_{\text{TM}} \) is not recognizable

Proof: Use Rice’s Theorem!

\[P(M) := \text{“}L(M) \text{ is regular} \text{”} \text{ is nontrivial:} \]
- there’s an \(M_\emptyset \) such that \(L(M_\emptyset) = \emptyset \): \(P(M_\emptyset) = 1 \)
- there’s an \(M' \) deciding \(\{0^n1^n \mid n \geq 0\} \): \(P(M') = 0 \)

\(P \) is also semantic:

If \(L(M) = L(M') \) then \(L(M) \) is regular iff \(L(M') \) is regular, so \(P(M) = 1 \) iff \(P(M') = 1 \), so \(P(M) = P(M') \)

By Rice’s Thm, we have \(\neg A_{\text{TM}} \leq_m \text{REGULAR}_{\text{TM}} \)
Definition: A decidable predicate $R(x,y)$ is a proposition about the input strings x and y, such that some TM M implements R. That is, for all x, y, $R(x,y)$ is TRUE \Rightarrow $M(x,y)$ accepts $R(x,y)$ is FALSE \Rightarrow $M(x,y)$ rejects

Can think of R as a function from $\Sigma^* \times \Sigma^* \rightarrow \{T,F\}$

Examples: $R(x,y)$ = “xy has at most 100 zeroes” $R(N,y)$ = “TM N halts on y in at most 99 steps”
Theorem: A language A is recognizable if and only if there is a decidable predicate $R(x, y)$ such that: $A = \{ x \mid \exists y \ R(x, y) \}$

Proof:

(1) If $A = \{ x \mid \exists y \ R(x,y) \}$ then A is recognizable

Define the TM $M(x)$: Enumerate all finite-length strings y, If $R(x,y)$ is true, accept $\Rightarrow M$ accepts exactly those x s.t. $\exists y \ R(x,y)$ is true

(2) If A is recognizable, then there is a decidable predicate $R(x, y)$ such that: $A = \{ x \mid \exists y \ R(x,y) \}$

Suppose TM M recognizes A. Let $R(x,y)$ be TRUE iff M accepts x in $|y|$ steps $\Rightarrow M$ accepts $x \Leftrightarrow \exists y \ R(x,y)$
Oracle Turing Machines, Turing Reductions and Hierarchies
Oracle Turing Machines

Is \((M, w)\) in \(A_{TM}\)?

\[
\begin{array}{c}
\text{INFINITE REWRITABLE TAPE}\\
\hline
A \quad N \quad P \quad U \quad T \quad \ldots
\end{array}
\]

\(q_0\)

FINITE STATE CONTROL

\(q_f\)
An oracle Turing machine M that can ask membership queries in a set $B \subseteq \Gamma^*$ on a special “oracle tape” [Formally, M enters a special state q_b]

The TM receives an answer to the query in one step[Formally, the transition function on q_b is defined in terms of the entire oracle tape: if the string y written on the oracle tape is in B, then state q_b is changed to q_{YES}, otherwise q_{NO}]

This notion makes sense even if B is not decidable!
How to Think about Oracles?

A black-box subroutine. In terms of Turing Machine pseudocode:
An oracle Turing machine M with oracle $B \subseteq \Gamma^*$ lets you include the following kind of branching instructions:

“if $(z \text{ in } B)$ then <do something>
else <do something else>”

where z is some string defined earlier in pseudocode.

By definition, the oracle TM can always check the condition $(z \text{ in } B)$ in one step.

This notion makes (mathematical) sense even if B is not decidable.
Definition: A is recognizable with B if there is an oracle TM \(M\) with oracle B that recognizes A

Definition: A is decidable with B if there is an oracle TM \(M\) with oracle B that decides A

Language A “Turing-Reduces” to B

\[A \leq_T B \]
A_{TM} is decidable with $HALT_{TM}$ ($A_{TM} \leq_T HALT_{TM}$)

We can decide if M accepts w using an ORACLE for the Halting Problem:

On input (M,w),
- If (M,w) is in $HALT_{TM}$ then run $M(w)$ and output its answer.
- else REJECT.
HALT\textsubscript{TM} is decidable with \(A_{TM} (\text{HALT}_{TM} \leq_{T} A_{TM}) \)

On input \((M,w)\), decide if \(M\) halts on \(w\) as follows:

1. If \((M,w)\) is in \(A_{TM}\) then ACCEPT

2. Else, switch the accept and reject states of \(M\) to get a machine \(M'\). If \((M',w)\) is in \(A_{TM}\) then ACCEPT

3. REJECT
\(\leq_T \) versus \(\leq_m \)

Theorem: If \(A \leq_m B \) then \(A \leq_T B \)

Proof (Sketch):

If \(A \leq_m B \) then there is a computable function
\(f : \Sigma^* \rightarrow \Sigma^* \), where for every \(w \),

\[w \in A \iff f(w) \in B \]

To decide \(A \) on the string \(w \), just compute \(f(w) \) and “call the oracle” for \(B \)

Theorem: \(\neg \text{HALT}_{TM} \leq_T \text{HALT}_{TM} \)

Theorem: \(\neg \text{HALT}_{TM} \not\leq_m \text{HALT}_{TM} \)

Why?
Limitations on Oracle TMs!

The following problem cannot be decided by any TM with an oracle for the Halting Problem:

SUPERHALT = \{ (M,x) | M, with an oracle for the Halting Problem, halts on x \}

We can use the proof by diagonalization!
Assume H (with HALT oracle) decides SUPERHALT
Define D(X) := “if H(X,X) (with HALT oracle) accepts then LOOP, else ACCEPT.” (D uses a HALT oracle to simulate H)
But D(D) halts ⇔ H(D,D) accepts ⇔ D(D) loops...

(by assumption) (by def of D)
Limits on Oracle TMs

“Theorem” There is an infinite hierarchy of unsolvable problems!

Given ANY oracle O, there is always a harder problem that cannot be decided with that oracle O

$\text{SUPERHALT}^0 = \text{HALT} = \{ (M,x) \mid M \text{ halts on } x \}.$

$\text{SUPERHALT}^1 = \{ (M,x) \mid M, \text{ with an oracle for } \text{HALT}^\text{TM}, \text{ halts on } x \}.$

$\text{SUPERHALT}^n = \{ (M,x) \mid M, \text{ with an oracle for } \text{SUPERHALT}^{n-1}, \text{ halts on } x \}$
\[
\begin{align*}
\Sigma_0^0 & \quad \Delta_3^0 \quad \Pi_3^0 \\
\Sigma_2^0 & \quad \Delta_3^0 \quad \Pi_2^0 \\
\Sigma_1^0 & \quad \Delta_2^0 \quad \Pi_2^0 \\
\Delta_1^0 & \quad \Sigma_2^0 \cap \Pi_2^0 \\
A_{TM} & \quad \text{Co-R.E. Languages} \\
\text{Decidable languages} & \quad \text{Co-R.E. Languages}
\end{align*}
\]