CS 154, Lecture 7: Communication Complexity

http://a2ru.org/
Communication Complexity

A model capturing one aspect of distributed computing.
Here focus on two parties: Alice and Bob

Function $f : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$

Two inputs, $x \in \{0,1\}^*$ and $y \in \{0,1\}^*$

We assume $|x| = |y| = n$, Think of n as HUGE

Alice only knows x, Bob only knows y

Goal: Compute $f(x, y)$ by communicating as few bits as possible between Alice and Bob

We do not count computation cost. We only care about the number of bits communicated.
Alice and Bob Have a Conversation

In every step: A bit is sent, which is a function of the party’s input and all the bits communicated so far.

Communication cost = number of bits communicated = 4 (in the example)
We assume Alice and Bob alternate in communicating, and the last bit sent is $f(x,y)$

More sophisticated models: separate number of rounds from number of bits
Def. A *protocol* for a function f is a pair of functions $A, B : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1, \text{STOP}\}$ with the semantics:

On input (x, y), let $r := 0$, $b_0 = \varepsilon$

While ($b_r \neq \text{STOP}$),

$r++$

If r is odd, Alice sends $b_r = A(x, b_1 \cdots b_{r-1})$

else Bob sends $b_r = B(y, b_1 \cdots b_{r-1})$

Output b_{r-1}.

Number of *rounds* $= r - 1$
Def. The cost of a protocol \(P \) for \(f \) on \(n \)-bit strings is
\[
\max_{x, y \in \{0,1\}^n} \text{number of rounds in } P \text{ to compute } f(x, y)
\]

The communication complexity of \(f \) on \(n \)-bit strings is the minimum cost over all protocols for \(f \) on \(n \)-bit strings = the minimum number of rounds used by any protocol that computes \(f(x, y) \), over all \(n \)-bit \(x, y \).
Example. Let \(f : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\} \) be arbitrary.

There is always a “trivial” protocol:
- Alice sends the bits of her \(x \) in odd rounds
- Bob sends the bits of his \(y \) in even rounds
After \(2n \) rounds, they both know each other’s input!

The communication complexity of every \(f \) is at most \(2n \)
Example: \[\text{PARITY}(x, y) = \sum_i x_i + \sum_i y_i \mod 2. \]

What’s a good protocol for computing PARITY?

Alice sends \(b_1 = (\sum_i x_i \mod 2) \)
Bob sends \(b_2 = (b_1 + \sum_i y_i \mod 2) \). Alice stops.

The communication complexity of PARITY is 2
Example: \(\text{MAJORITY}(x, y) = \) most frequent bit in \(xy \)

What’s a good protocol for computing MAJORITY?

Alice sends \(N_x = \) number of 1s in \(x \)
Bob computes \(N_y = \) number of 1s in \(y \),
 sends 1 iff \(N_x + N_y \) is greater than \((|x| + |y|)/2 = n \)

Communication complexity of MAJORITY is \(O(\log n) \)
Example: $EQUALS(x, y) = 1 \iff x = y$

What’s a good protocol for computing $EQUALS$???

Communication complexity of $EQUALS$ is at most $2n$
Connection to Streaming and DFAs

Let $L \subseteq \{0,1\}^*$
Def. $f_L: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$
for x, y with $|x| = |y|$ as:

$$f_L(x, y) = 1 \iff xy \in L$$

Examples:

$L = \{ x \mid x \text{ has an odd number of 1s} \}$

$\Rightarrow f_L(x, y) = \text{PARITY}(x,y) = \sum_i x_i + \sum_i y_i \mod 2$

$L = \{ x \mid x \text{ has more 1s than 0s} \}$

$\Rightarrow f_L(x, y) = \text{MAJORITY}(x,y)$

$L = \{ xx \mid x \in \{0,1\}^* \}$

$\Rightarrow f_L(x, y) = \text{EQUALS}(x,y)$
Connection to Streaming and DFAs

Let $L \subseteq \{0,1\}^*$
Def. $f_L: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$
for x, y with $|x| = |y|$ as:
\[f_L(x, y) = 1 \iff xy \in L \]

Theorem: If L has a streaming algorithm using $\leq s$ space, then the comm. complexity of f_L is at most $O(s)$.

Proof: Alice runs streaming algorithm A on x.
Sends the memory content of A: this is s bits of space
Bob starts up A with that memory content, runs A on y. Gets an output bit, sends to Alice.
Connection to Streaming and DFAs

Let \(L \subseteq \{0,1\}^\ast \)
Def. \(f_L(x,y) = 1 \iff xy \in L \)

Theorem: If \(L \) has a streaming algorithm using \(\leq s \) space, then the comm. complexity of \(f_L \) is at most \(O(s) \).

Corollary: For every regular language \(L \), the comm. complexity of \(f_L \) is \(O(1) \).

Example: Comm. Complexity of PARITY is \(O(1) \)

Corollary: Comm. Complexity of MAJORITY is \(O(\log n) \), because there’s a streaming algorithm for \(\{ x : x \text{ has more 1's than 0's} \} \) with \(O(\log n) \) space

What about the Comm. Complexity of EQUALS?
Communication Complexity of EQUALS

Theorem: The comm. complexity of EQUALS is $\Theta(n)$. In particular, every protocol for EQUALS needs $\geq n$ bits of communication.

No communication protocol can do much better than “send your whole input”!

Corollary: $L = \{ww \mid w \in \{0,1\}^*\}$ is not regular.

Moreover, every streaming algorithm for L needs $c \cdot n$ bits of memory, for some constant $c > 0$.
Theorem: The comm. complexity of EQUALS is $\Theta(n)$. In particular, every protocol for EQUALS needs $\geq n$ bits of communication.

Idea: Consider all possible ways A & B can communicate.

Definition: The communication pattern of a protocol on inputs (x, y) is the sequence of bits that Alice & Bob send.

Pattern: 0110
Communication Complexity of EQUALS

Theorem: The communication complexity of EQUALS is $\Theta(n)$. In particular, every protocol for EQUALS needs $\geq n$ bits of communication.

Proof: By contradiction. Suppose CC of EQUALS is $\leq n - 1$. Then there are $\leq 2^{n-1}$ possible communication patterns of that protocol, over all pairs of inputs (x, y) with n bits each.

Claim: There are $x \neq y$ such that on (x, x) and on (y, y), the protocol uses the same pattern P.

Now, what is the communication pattern on (x, y)? This pattern is also P (WHY?)
So Alice & Bob output the same bit on (x, y) and (x, x).
But $\text{EQUALS}(x, y) = 0$ and $\text{EQUALS}(x, x) = 1$. Contradiction!
Randomized Protocols Help!

EQUALS needs cn bits of communication, but...

Theorem: For all (x, y) of n bits each, there is a *randomized* protocol for EQUALS(x, y) using only $O(\log n)$ bits of communication, which works with probability 99.9%!

Use Error Correcting Codes … E.g:

- Alice picks a random prime number p between 2 and n^2.
- She sends p and her string x modulo p.
- This is a number between 0 and n^2, takes $O(\log n)$ bits to send.
- Bob checks whether $y = x$ modulo p. Sends output bit.

Why does it work (with high probability)?
Communication Complexity: Powerful Tool (we seen just a tiny demonstration).

Communication Complexity, Streaming Algorithms and Regular languages – connected.

Randomness – could be a useful resource of computation (II)
Questions?