CS154, Lecture 16: More NP-Complete Problems; PCPs
Is 3SAT solvable in $O(n)$ time on a multitape TM?

Are there logic circuits of size $6n$ for 3SAT?

If yes, then not only is $P=NP$, but there would be a “dream machine” that could crank out short proofs of theorems, quickly optimize all aspects of life...

recognizing quality work is all you need to produce
There are thousands of NP-complete problems

Your favorite topic certainly has an NP-complete problem somewhere in it

Even the other sciences are not safe: biology, chemistry, physics have NP-complete problems too!
Given a favorite problem $\Pi \in \text{NP}$, how can we prove it is NP-hard?

Generic Recipe:
1. Take a problem Σ that you know to be NP-hard (3-SAT)
2. Prove that $\Sigma \leq_p \Pi$

Then for all $A \in \text{NP}$, $A \leq_p \Sigma$ and $\Sigma \leq_p \Pi$
We conclude that $A \leq_p \Pi$, and Π is NP-hard
Π is NP-Complete
The Clique Problem

Given a graph G and positive k, does G contain a complete subgraph on k nodes?

CLIQUE = \{(G,k) \mid G\text{ is an undirected graph with a } k\text{-clique}\}

Theorem (Karp): CLIQUE is NP-complete
Proof Idea: $3\text{SAT} \leq_p \text{CLIQUE}$

Transform a 3-cnf formula ϕ into (G,k) such that

$\phi \in 3\text{SAT} \iff (G,k) \in \text{CLIQUE}$

Want transformation that can be done in time that is polynomial in the length of ϕ

How can we encode a logic problem as a graph problem?
We transform a 3-cnf formula ϕ into (G,k) such that

$$\phi \in 3\text{SAT} \iff (G,k) \in \text{CLIQUE}$$

Let $C_1, C_2, ..., C_m$ be clauses of ϕ. Assign $k := m$. Make a graph G with m groups of 3 nodes each.

Group i corresponds to clause C_i of ϕ. Each node in group i is labeled with a literal of C_i.

Put edges between all pairs of nodes in different groups, except pairs of nodes with labels x_i and $\neg x_i$.

Put no edges between nodes in the same group.

When done putting in all the edges, erase the labels.
\[(x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)\]

\[|V| = 9\]

\[k = 3\]
\((x_1 \lor x_1 \lor x_1) \land (\neg x_1 \lor \neg x_1 \lor x_2) \land (x_2 \lor x_2 \lor x_2) \land (\neg x_2 \lor \neg x_2 \lor x_1)\)
Claim: \(\phi \in 3\text{SAT} \iff (G,m) \in \text{CLIQUE} \)

Claim: If \(\phi \in 3\text{SAT} \) then \((G,m) \in \text{CLIQUE})
Proof: Given a SAT assignment \(A \) of \(\phi \), for every clause \(C \) there is at least one literal in \(C \) that’s set true by \(A \)
For each clause \(C \), let \(v_C \) be a vertex from group \(C \) whose label is a literal that is set true by \(A \)

Claim: \(S = \{v_C : C \in \phi\} \) is an \(m \)-clique
Proof: Let \(v_C, v_C' \) be in \(S \). Suppose \((v_C,v_C') \notin E\).
Then \(v_C \) and \(v_C' \) must label inconsistent literals, call them \(x \) and \(\neg x \)
But assignment \(A \) cannot satisfy both \(x \) and \(\neg x \)
Therefore \((v_C,v_C') \in E\), for all \(v_C, v_C' \in S \).
Hence \(S \) is an \(m \)-clique, and \((G,m) \in \text{CLIQUE} \)
Claim: \(\phi \in 3\text{SAT} \iff (G,m) \in \text{CLIQUE} \)

Claim: If \((G,m) \in \text{CLIQUE}\) then \(\phi \in 3\text{SAT}\)

Proof: Let \(S\) be an \(m\)-clique of \(G\). We construct a satisfying assignment \(A\) of \(\phi\).

Claim: \(S\) contains exactly one node from each group.

Now for each variable \(x\) of \(\phi\), make assignment \(A\):

Assign \(x\) to 1 \(\iff\) There is a vertex \(v \in S\) with label \(x\)

For all \(i = 1,\ldots,m\), at least one vertex from group \(i\) is in \(S\).
Therefore, for all \(i = 1,\ldots,m\). \(A\) satisfies at least one literal in the \(i\)th clause of \(\phi\). Therefore \(A\) is a satisfying assignment to \(\phi\)
Independent Set

IS: Given a graph $G = (V, E)$ and integer k, is there $S \subseteq V$ such that $|S| = k$ and no two vertices in S have an edge?

IS = \{ (G,k) | G is an undirected graph with an IS of size k \}

CLIQUE: Given $G = (V, E)$ and integer k, is there $S \subseteq V$ such that $|S| = k$ and every pair of vertices in S have an edge?

CLIQUE \leq_p IS:
Given $G = (V, E)$, output $G' = (V, E')$ where $E' = \{ (u,v) | (u,v) \notin E \}$.

$$(G, k) \in \text{CLIQUE} \text{ iff } (G', k) \in \text{IS}$$
The Vertex Cover Problem

vertex cover = set of nodes C that cover all edges:
For all edges, at least one endpoint is in C
VERTEX-COVER = \{ (G,k) | G is a graph with a vertex cover of size at most k \}

Theorem: VERTEX-COVER is NP-Complete
(1) VERTEX-COVER ∈ NP
(2) IS ≤_p VERTEX-COVER
IS \leq_p VERTEX-COVER

Want to transform a graph G and integer k into G' and k' such that

$$(G,k) \in IS \iff (G',k') \in VERTEX$-COVER$$
IS \leq_p \textsc{VERTEX-COVER}

Claim: For every graph $G = (V,E)$, and subset $S \subseteq V$, S is an independent set if and only if $(V - S)$ is a vertex cover.

Proof: S is an independent set

$\iff (\forall u, v \in V)[(u \in S \text{ and } v \in S) \Rightarrow (u,v) \notin E]$

$\iff (\forall u, v \in V)[(u,v) \in E \Rightarrow (u \notin S \text{ or } v \notin S)]$

$\iff (V - S)$ is a vertex cover

Therefore $(G,k) \in \text{IS} \iff (G,|V| - k) \in \text{VERTEX-COVER}$

Our polynomial time reduction: $f(G,k) := (G, |V| - k)$
The Subset Sum Problem

Given: Set $S = \{a_1, \ldots, a_n\}$ of positive integers and a positive integer t

Is there an $A \subseteq \{1, \ldots, n\}$ such that $t = \sum_{i \in A} a_i$?

$\text{SUBSET-SUM} = \{(S, t) | \exists A \subseteq S \text{ s.t. } t = \sum_{i \in A} a_i\}$

A simple number-theoretic problem

Theorem: SUBSET-SUM is NP-complete

Note: There is an $O(n \cdot t)$ time algorithm for Subset Sum. Does this prove $P=NP$?
Want to reduce a graph to a set of numbers

Given \((G, k)\), let \(E = \{e_0, ..., e_{m-1}\}\) and \(V = \{1, ..., n\}\)

Our subset sum instance \((S, t)\) will have \(|S| = n+m\)

“Edge numbers”: For every \(e_j \in E\), put \(b_j = 4^j\) in \(S\)

“Node numbers”: For every \(i \in V\), put \(a_i = 4^m + \sum_{j: i \in e_j} 4^j\) in \(S\)

Set the target number: \(t = k \cdot 4^m + \sum_{j=0}^{m-1} (2 \cdot 4^j)\)
For every $e_j \in E$, put $b_j = 4^j$ in S
For every $i \in V$, put $a_i = 4^m + \sum_{j : i \in e_j} 4^j$ in S
Set the target number: $t = k \cdot 4^m + \sum_{j=0}^{m-1} (2 \cdot 4^j)$

Claim: If $(G, k) \in VC$ then $(S, t) \in \text{SUBSET-SUM}$
Suppose $C \subseteq V$ is a VC with k vertices.
Let $S' = \{a_i : i \in C\} \cup \{b_j : |e_j \setminus C| = 1\}$
$S' = (\text{node numbers corresponding to nodes in } C) \text{ plus}$
$\quad (\text{edge numbers corresponding to edges covered only once by } C)$

Claim: The sum of all numbers in S' equals t

Think of the numbers as being in “base 4”... as vectors with $m+1$ components
For every $e_j \in E$, put $b_j = 4^j$ in S

For every $i \in V$, put $a_i = 4^m + \sum_{j : i \in e_j} 4^j$ in S

Set the target number: $t = k \cdot 4^m + \sum_{j=0}^{m-1} (2 \cdot 4^j)$

Claim: If $(S,t) \in \text{SUBSET-SUM}$ then $(G,k) \in \text{VC}$

Suppose $C \subseteq V$ and $F \subseteq E$ satisfy

$$\sum_{i \in C} a_i + \sum_{e_j \in F} b_j = t = k \cdot 4^m + \sum_{j=0}^{m-1} (2 \cdot 4^j)$$

Claim: C is a vertex cover of size k.

Proof: Subtract out the b_j numbers from the above sum. What remains is a sum of the form:

$$\sum_{i \in C} a_i = k \cdot 4^m + \sum_{j=0}^{m-1} (c_j \cdot 4^j)$$

where each $c_j > 0$. But $c_j =$ number of nodes in C covering e_j

This implies C is a vertex cover!
Finding Paths - Two Problems

Let G denote a graph, and s and t denote nodes.

SHORTEST PATH
$= \{(G, s, t, k) \mid G \text{ has a simple path of length } < k \text{ from } s \text{ to } t \}$

LONGEST PATH
$= \{(G, s, t, k) \mid G \text{ has a simple path of length } > k \text{ from } s \text{ to } t \}$

Are either of these in P? Are both of them?
HAMPATH = \{(G,s,t) \mid G \text{ is an directed graph with a Hamiltonian path from } s \text{ to } t\}

Theorem: HAMPATH is NP-Complete

(1) HAMPATH ∈ NP

(2) 3SAT ≤_p HAMPATH

See Sipser for the proof
HAMPATH \leq_p LONGEST-PATH

LONGEST-PATH
$= \{ (G, s, t, \mathbf{k}) \mid G \text{ has a simple path of length } > \mathbf{k} \text{ from } s \text{ to } t \}$

Can reduce HAMPATH to LONGEST-PATH by observing:

$(G, s, t) \in \text{HAMPATH} \iff (G, s, t, |V|) \in \text{LONGEST-PATH}$

Therefore LONGEST-PATH is NP-hard.
Coping with NP-Completeness [Advanced Topics]

There are thousands of NP-complete problems

Many are solved all the time !?!

Average Case vs. Worst Case; Heuristics vs. Algorithms [Beyond Worst-Case Analysis (CS264)]

Special cases/parameters that make a problem easy

Approximation Algorithms
Approximating Vertex Cover

Vertex Cover = set of nodes that cover all edges. **Minimization problem**: find the smallest VC

A very simple (greedy) approximation algorithm \(A \): finds a VC that is at most twice as large as the optimal (a 2-approximation).

Algorithm: Set \(C=\emptyset \) and while there exist uncovered edge \(e \), add both endpoints of such \(e \) to \(C \)

Why does it work?
Max-SAT

Max-SAT = given a cnf formula how many clauses can be satisfied? A maximization problem: satisfy the most clauses

Can always satisfy a constant fraction of all the clauses. Specifically: When all clauses have at least 3 literals, can satisfy at least $7/8$ of all clauses $\geq 7/8$ of clauses of clauses in optimal solution (\Rightarrow a $7/8$-approximation).

Can we approximate MAX-SAT up to any constant < 1? Not if P≠NP

For other problems (clique) no constant-approximation is likely
The PCP Theorem

For some constant $\alpha > 0$ and for every language $L \in \text{NP}$, there exists a polynomial-time computable function f that maps every input x into a 3cnf formula $f(x)$ s.t.

- If $x \in L$ then $f(x) \in \text{SAT}$
- If $x \not\in L$ then no assignment satisfies more than $(1 - \alpha)$ fraction of $f(x)$ clauses.

\Rightarrow sufficiently good approximation of MAX-SAT implies P=NP
A rich literature giving exceedingly sophisticated approximation algorithms and exceedingly sophisticated inapproximability results.

Know the best approximation factors for a wide range of problems (especially those where the algorithms are simple).

Inapproximability results via stronger PCPs and via approximation-preserving reductions.

3SAT \leq_p CLIQUE is (very) approximation-preserving; why?
IS \leq_p VERTEX-COVER is completely not; why?
PCPs = Probabilistically Checkable Proofs

Alternative statement of PCP Theorem (informal):

Every statement that has a polynomial-time verifiable proof has such a proof where the verifier only reads $O(1)$ bits of the proof such that

[perfect completeness]: if the statement is correct accept with Probability 1
[soundness]: if the statement is false reject with probability 0.99
PCPs = Probabilistically Checkable Proofs

Alternative statement of PCP Theorem (informal):

Every statement that has a polynomial-time verifiable proof has such a proof where the verifier only reads $O(1)$ bits of the proof such that

[perfect completeness]: if the statement is correct accept with Probability 1
[soundness]: if the statement is false reject with probability 0.99
Interactive Proofs

PCPs add randomness to proofs, what if we also add interaction?

\[x \in L? \]

Interactive Proofs can be used to prove membership in powerful (PSPACE) languages. For example: \(V \) knows a winning Chess strategy: \(\text{IP}=\text{PSPACE} \)

Zero-Knowledge Proofs – reveal no information apart of \(x \in L \)