Limitations on DFAs (I):

Pumping Lemma

CS 154, Omer Reingold
Non-Regular Languages

Regular or Not?

\[D = \{ w \mid w \text{ has equal number of occurrences of } 01 \text{ and } 10 \} \]

REGULAR!

\[C = \{ w \mid w \text{ has equal number of } 1s \text{ and } 0s \} \]

NOT REGULAR!

How can we prove that there is no DFA for a particular language?

- Surprising Algorithms (even in restricted models) are routinely being discovered
The Pumping Lemma: Structure in Regular Languages

Let L be a regular language

Then there is a positive integer P s.t.

For all strings $w \in L$ with $|w| \geq P$ there is a way to write $w = xyz$, where:

1. $|y| > 0$ (that is, $y \neq \varepsilon$)
2. $|xy| \leq P$
3. For all $i \geq 0$, $xy^iz \in L$

Why is it called the pumping lemma?

The word w gets pumped into longer and longer strings...
Proof: Let M be a DFA that recognizes L

Let P be the number of states in M

Let w be a string where $w \in L$ and $|w| \geq P$

We show: $w = xyz$

1. $|y| > 0$
2. $|xy| \leq P$
3. $xy^iz \in L$ for all $i \geq 0$

Claim: There must exist j and k such that $0 \leq j < k \leq P$, and $q_j = q_k$
Generalized Pumping Lemma:

Let L be a regular language

Then there is a positive integer P s.t.

for all strings $awb \in L$ with $|w| \geq P$ there is a way to write $w = xyz$, where:

1. $|y| > 0$ (that is, $y \neq \varepsilon$)
2. $|xy| \leq P$
3. For all $i \geq 0$, $axy^izb \in L$
Let’s prove that \(\text{EQ} = \{ w \mid \#1s = \#0s \} \) is not regular.

By contradiction. Assume \(\text{EQ} \) is regular. Let \(P \) be as in pumping lemma. Let \(w = 0^P 1^P \in \text{EQ} \).

\[\Rightarrow \] Can write \(w = xyz \), with \(|y| > 0, |xy| \leq P \), such that for all \(i \geq 0 \), \(xy^i z \) is also in \(\text{EQ} \).

Claim: The string \(y \) must be all zeroes.

Why? Because \(|xy| \leq P \) and \(w = xyz = 0^P 1^P \)

But then \(xyyz \) has more 0s than 1s. Contradiction!
Applying the Pumping Lemma

Prove: \(SQ = \{0^n^2 \mid n \geq 0\} \) is not regular

Assume \(SQ \) is regular. Let \(w = 0^{p^2} \)

\[\Rightarrow \text{Can write } w = xyz, \text{ with } |y| > 0, \ |xy| \leq P, \] such that for all \(i \geq 0, \ xy^iz \) is also in \(SQ \)

So \(xyyz \in SQ \). Note that \(xyyz = 0^{p^2+|y|} \)

Note that \(0 < |y| < P \)

So \(|xyyz| = p^2 + |y| \leq p^2 + P < p^2 + 2P + 1 = (p+1)^2 \)

and \(p^2 < |xyyz| < (p+1)^2 \)

Therefore \(|xyyz| \) is not a perfect square!

Hence \(0^{p^2+|y|} = xyyz \notin SQ \), so our assumption must be false.

\[\Rightarrow SQ \text{ is not regular!} \]
Parting thoughts:
Pumping for contradictions
DFAs can’t count