Streaming Algorithms
Here: vague on computation cost (less of an issue for DFAs).
All our examples – efficient computation
L = {x | x has more 1’s than 0’s}

Initialize: \(C := 0 \) and \(B := 0 \)

When the next symbol \(\sigma \) is read,
If \((C = 0) \) then \(B := \sigma, C := 1 \)
If \((C \neq 0) \) and \((B = \sigma) \) then \(C := C + 1 \)
If \((C \neq 0) \) and \((B \neq \sigma) \) then \(C := C - 1 \)

When the stream stops,
accept if \(B=1 \) and \(C > 0 \), else reject

\(B = \) the majority bit
\(C = \) how many more times that \(B \) appears

On all strings of length \(n \), the algorithm uses \((1 + \log_2 n)\) bits of space (to store \(B \) and \(C \))
Streaming algorithms differ from DFAs in several significant ways:

1. Streaming algorithms can output more than one bit
2. The “memory” or “space” of a streaming algorithm can (slowly) increase as it reads longer strings
3. Sometimes allow making multiple passes over the data; Could be randomized

Can recognize non-regular languages
Theorem: Suppose a language L can be recognized by a DFA M with $\leq 2^p$ states. Then L is computable by a streaming algorithm A using $\leq p$ bits of space.

Proof Idea: Can define algorithm A as follows:
Initialize: Encode the start state of M in memory.
When the next symbol σ is read: using the transition function of M, update the state of M.
When the string ends: Output accept if the current state of M is a final state, reject otherwise.
DFAs and Streaming

∀L ⊆ Σ* define \(L_n = \{x \in L \mid |x| = n\} \); \(L_{\leq n} = \{x \in L \mid |x| \leq n\} \)

Theorem: Suppose \(L \) is computable by a streaming algorithm \(A \) using \(f(n) \) bits of space, on all strings of length up to \(n \).
⇒ for all \(n \), there is a DFA \(M \) with \(\leq 2^{f(n)} \) states such that \(L_{\leq n} = L(M)_{\leq n} \)

Proof Idea:
States of \(M = 2^{f(n)} \) possible settings of \(A \)'s memory, on strings of length up to \(n \)
Start state of \(M = \) Initial memory configuration of \(A \)
Transition function = Mimic how \(A \) updates its memory
Accept states of \(M = \) Configurations in which \(A \) would accept, if string ended
Example: \(L = \{ x \mid x \text{ has more } 1's \text{ than } 0's \} \)

Initialize: \(C := 0 \) and \(B := 0 \)
When the next symbol \(x \) is read,
If \(C = 0 \) then \(B := x, C := 1 \)
If \(C \neq 0 \) and \(B = x \) then \(C := C + 1 \)
If \(C \neq 0 \) and \(B \neq x \) then \(C := C - 1 \)
When the stream stops,
accept if \(B=1 \) and \(C > 0 \), else reject

Want: A DFA that agrees with \(L \) on all strings of length \(\leq 2 \)
$L = \{x \mid x \text{ has more 1’s than 0’s}\}$

Is there a streaming algorithm for L using much less than $(\log_2 n)$ space?

Theorem: Every streaming algorithm for L needs at least $(\log_2 n) - 1$ bits of space

We will use:

- Myhill-Nerode Theorem
- The connection between DFAs and streaming
\[L = \{ x \mid x \text{ has more 1's than 0's} \} \]

Theorem: Every streaming algorithm for \(L \) requires at least \((\log_2 n) - 1\) bits of space

Proof Idea: Let \(n \) be even, and \(L_n = \{0,1\}^n \cap L \)

We will give a set \(S_n \) of \(n/2+1 \) strings such that each pair in \(S_n \) is *distinguishable* in \(L_n \)

Myhill-Nerode Thm ⇒ Every DFA recognizing \(L_n \) needs at least \(n/2+1 \) states

⇒ Every streaming algorithm for \(L \) needs at least \((\log n) - 1\) bits of memory on strings of length \(n \)
\[L = \{ x \mid x \text{ has more 1's than 0's} \} \]

Theorem: Every streaming algorithm for \(L \) requires at least \((\log_2 n) - 1\) bits of space.

Suppose we partition all strings into their equivalence classes under \(\equiv_{L_n} \).

But the number of states in a DFA recognizing \(L_n \) is at least the number of equivalence classes under \(\equiv_{L_n} \).
\[L = \{ x \mid x \text{ has more } 1's \text{ than } 0's \} \]

Theorem: Every streaming algorithm for \(L \) requires at least \((\log_2 n) - 1\) bits of space.

Proof: Let \(S_n = \{0^{n/2} - i \, 1^i \mid i = 0, ..., n/2\} \)

Let \(x = 0^{n/2 - k} \, 1^k \) and \(y = 0^{n/2 - j} \, 1^j \) be from \(S_n \), with \(k > j \)

Claim: \(z = 0^{k-1} \, 1^{n/2-(k-1)} \) distinguishes \(x \) and \(y \) in \(L_n \)

\(xz \) has \(n/2 - 1 \) zeroes and \(n/2 + 1 \) ones \(\Rightarrow xz \in L_n \)

\(yz \) has \(n/2 + (k-j-1) \) zeroes and \(n/2 - (k-j-1) \) ones

But \(k-j-1 \geq 0 \) ... so \(yz \not\in L_n \)

So the string \(z \) distinguishes \(x \) and \(y \), and \(x \not\in L_n \, y \)
$L = \{x \mid x \text{ has more 1’s than 0’s}\}$

Theorem: Every streaming algorithm for L requires at least $(\log_2 n) - 1$ bits of space

Proof:
All pairs of strings in S_n are distinguishable in L_n
⇒ There are at least $|S_n|$ equiv classes of \equiv_{L_n}

By the Myhill-Nerode Theorem:
⇒ All DFAs recognizing L_n need $\geq |S_n|$ states
⇒ Every streaming algorithm for L requires at least $(\log_2 |S_n|)$
bits of space.
Recall $|S_n| = n/2 + 1$ and we’re done!
Finding Frequent Items

A streaming algorithm for recognizing
\(L = \{x \mid \text{x has more 1’s than 0’s}\} \)
tells us if 1’s occur more frequently than 0’s.

What if the alphabet is more than just 1’s and 0’s?

And what if we want to find the “top 10” symbols?

FREQUENT ITEMS: Given \(k \) and a string \(x = x_1 \ldots x_n \in \Sigma^n \),
output the set \(S = \{\sigma \in \Sigma \mid \sigma \text{ occurs } \geq n/k \text{ times in } x\} \)
(How large can the set \(S \) be?)
FREQUENT ITEMS: Given k and a string $x = x_1 \ldots x_n \in \Sigma^n$, output the set $S = \{\sigma \in \Sigma \mid \sigma \text{ occurs } > n/k \text{ times in } x\}$

Theorem: There is a two-pass streaming algorithm for FREQUENT ITEMS using $O(k (\log |\Sigma| + \log n))$ space.

1st pass: Initialize an set $T \subseteq \Sigma \times \mathbb{N}$ (originally empty)
Read the next symbol σ from the stream.
If $(\sigma,m) \in T$, then $T := T - \{(\sigma,m)\} + \{(\sigma,m+1)\}$
Else if $|T| < k-1$ then $T := T + \{(\sigma,1)\}$
Else for all $(\sigma',m') \in T$,
 $T := T - \{(\sigma',m')\} + \{(\sigma',m'-1)\}$
 If $m' = 0$ then $T := T - \{(\sigma',m')\}$
Claim: T contains all σ occurring $> n/k$ times in x
2nd pass: Count occurrences of all σ' appearing in T
to determine those occurring $> n/k$ times
Number of Distinct Elements

The DE problem
Input: $x \in \{0,1,\ldots,2^k\}^*$, $2^k > |x|^2$
Output: The number of distinct elements appearing in x

Note: There is a streaming algorithm for DE using $O(kn)$ space

Theorem: Every streaming algorithm for DE requires $\Omega(kn)$ space
Theorem: Every streaming algorithm for DE requires $\Omega(kn)$ space

Let $\Sigma = \{0,1,\ldots,2^k\}$

Define: $x,y \in \Sigma^*$ are DE distinguishable if
$(\exists z \in \Sigma^*)[xz \text{ and } yz \text{ contain a different number of distinct elements}]$

Lemma: Let $S \subseteq \Sigma^*$ be such that every pair in S is DE distinguishable. Then every streaming algorithm for DE needs $\geq (\log_2 |S|)$ bits of space.

Proof: Pigeonhole Principle! If an algorithm A uses $< (\log_2 |S|)$ bits, there are distinct x, y in S that lead A to the same memory state. Consider xz and yz ...
Theorem: Every streaming algorithm for DE requires $\Omega(kn)$ space

Lemma: Let $S \subseteq \Sigma^*$ be such that every pair in S is DE distinguishable. Then every streaming algorithm for DE needs $\geq (\log_2 |S|)$ bits of space.

Lemma: There is a DE distinguishable S of size $2^{\Omega(kn)}$

Proof: For each subset T of Σ of size $n/2$,

define x_T to be any concatenation of the strings in T

For distinct sets T and T', x_T and x_T' are distinguishable:

$x_T x_T$ contains exactly $n/2$ distinct elements

$x_T' x_T$ has more than $n/2$ distinct elements

The total number of such subsets is $2^{\Omega(kn)}$, for $2^k > n^2$.
Randomized Algorithms Help!

The DE problem
Input: \(x \in \{0,1,\ldots,2^k\}^*, \ 2^k > |x|^2 \)
Output: The number of distinct elements appearing in \(x \)

Theorem: There is a randomized streaming algorithm that can approximate DE to within 0.1% error, using \(O(k + \log n) \) space!

Suppose: the elements are selected uniformly at random. What can we say about the minimal element?
If we have at our disposal a random permutation \(h \) over \(\{0,1,\ldots,2^k\} \) what can we do?
Derandomization: \(h \) that is efficient and have short description.
Parting thought:
Streaming – modern day incarnations of DFAs
Randomness – could be a useful resource of computation (I)