Variants of TM and
The Church-Turing Thesis

CS 154, Omer Reingold
Turing Machine (1936)

INFINITE REWRITABLE TAPE

FINITE STATE CONTROL

A N P U T
Multitape Turing Machines

\[\delta : Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L,R\}^k \]
Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine.
Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine.
Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine.
Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine
Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine
The Church-Turing Thesis

Everyone’s
Intuitive Notion = Turing Machines
of Algorithms

This is not a theorem – it is a falsifiable scientific hypothesis.

And it has and is still been tested
Theorem: Every nondeterministic Turing machine \mathcal{N} can be transformed into a Turing Machine \mathcal{M} that accepts precisely the same strings as \mathcal{N}.

Proof Idea (more details in Sipser)
Pick a natural ordering on all strings in $\{Q \cup \Gamma \cup \#\}^*$

$\mathcal{M}(w)$: For all strings $D \in \{Q \cup \Gamma \cup \#\}^*$ in the ordering,
Check if $D = C_0\# \cdots \#C_k$ where C_0, \ldots, C_k is some accepting computation history for \mathcal{N} on w.
If so, accept.
Recognizability via Logic

Definition: A decidable predicate \(R(x,y) \) is a proposition about the input strings \(x \) and \(y \), such that some TM \(M \) implements \(R \). That is, for all \(x, y \),

\[
\begin{align*}
R(x,y) & \text{ is TRUE } \Rightarrow M(x,y) \text{ accepts } \\
R(x,y) & \text{ is FALSE } \Rightarrow M(x,y) \text{ rejects }
\end{align*}
\]

Can think of \(R \) as a function from \(\Sigma^* \times \Sigma^* \to \{T,F\} \)

Examples: \(R(x,y) = \text{“}xy \text{ has at most 100 zeroes”} \)
\(R(N,y) = \text{“}TM N \text{ halts on } y \text{ in at most 99 steps”} \)
Theorem: A language A is recognizable if and only if there is a decidable predicate $R(x, y)$ such that: $A = \{ x \mid \exists y \ R(x, y) \}$

Proof:

(1) If $A = \{ x \mid \exists y \ R(x,y) \}$ then A is recognizable

Define the TM $M(x)$: Enumerate all finite-length strings y, If $R(x,y)$ is true, accept $\Rightarrow M$ accepts exactly those x s.t. $\exists y \ R(x,y)$ is true

(2) If A is recognizable, then there is a decidable predicate $R(x, y)$ such that: $A = \{ x \mid \exists y \ R(x,y) \}$

Suppose TM M recognizes A. Let $R(x,y)$ be TRUE iff M accepts x in $|y|$ steps $\Rightarrow M$ accepts $x \Leftrightarrow \exists y \ R(x,y)$
Parting thoughts:

- Many natural variants of TM – all equivalent.
- Church-Turing thesis: this is not a coincidence.
- Nondeterminism doesn’t add power (unless we take efficiency into account).