Computability and the Foundations of Mathematics
A formal system describes a formal language for
- writing (finite) mathematical statements,
- has a definition of what statements are “true”
- has a definition of a proof of a statement

Example: Every TM M defines some formal system F
{Mathematical statements in $F)} = \Sigma^*$
String w represents the statement “M accepts w”
✓ {True statements in $F)} = L(M)$
✓ A proof that “M accepts w” can be defined to be an accepting computation history for M on w
Interesting Formal Systems

Define a formal system F to be interesting if:

1. Mathematical statements that can be precisely described in English should be expressible in F

2. Proofs are “convincing” – a TM can check that a proof of a theorem is correct (decidable)

3. Simple proofs that can be precisely described in English should be expressible in F
Define a formal system F to be interesting if:

1. Any mathematical statement about computation can be (computably) described as a statement of F.

 Given (M, w), there is a (computable) $S_{M,w}$ in F such that $S_{M,w}$ is true in F if and only if M accepts w.

2. Proofs are “convincing” – a TM can check that a proof of a theorem is correct

 This set is decidable: $\{(S, P) \mid P \text{ is a proof of } S \text{ in } F\}$

3. If S is in F and there is a proof of S describable as a computation, then there’s a proof of S in F.

 If M accepts w, then there is a proof P in F of $S_{M,w}$
Consistency and Completeness

A formal system F is consistent or sound if no false statement has a valid proof in F (Proof in F implies Truth in F)

A formal system F is complete if every true statement has a valid proof in F (Truth in F implies Proof in F)
Limitations on Mathematics

For every consistent and interesting F,

Theorem 1. (Gödel 1931) F is incomplete:
There are mathematical statements in F that are true but cannot be proved in F.

Theorem 2. (Gödel 1931) The consistency of F cannot be proved in F.

Theorem 3. (Church-Turing 1936) The problem of checking whether a given statement in F has a proof is undecidable.
Unprovable Truths in Mathematics

(Gödel) Every consistent interesting F is incomplete: there are true statements that cannot be proved.

Let $S_{M,w}$ in F be true if and only if M accepts w

Proof: Define Turing machine $G(x)$:
1. Obtain own description G [Recursion Theorem]
2. Construct statement $S' = \neg S_{G,\varepsilon}$
3. Search for a proof of S' in F over all finite length strings. Accept if a proof is found.

Claim: S' is true in F, but has no proof in F (S' basically says “There is no proof of S' in F”)
(Gödel 1931) The consistency of \(F \) cannot be proved within any interesting consistent \(F \)

Proof: Suppose we can prove “\(F \) is consistent” in \(F \)

We constructed \(\neg S_{G, \varepsilon} = \text{“} G \text{ does not accept } \varepsilon \text{”} \) which we showed is true, but has no proof in \(F \)

\(G \) does not accept \(\varepsilon \) \(\iff \) There is no proof of \(\neg S_{G, \varepsilon} \) in \(F \)

But if there’s a proof in \(F \) of “\(F \) is consistent” then there is a proof in \(F \) of \(\neg S_{G, \varepsilon} \) (here’s the proof):

“If \(S_{G, \varepsilon} \) is true, then there is a proof in \(F \) of \(\neg S_{G, \varepsilon} \)

\(F \) is consistent, therefore \(\neg S_{G, \varepsilon} \) is true.

But \(S_{G, \varepsilon} \) and \(\neg S_{G, \varepsilon} \) cannot both be true.

Therefore, \(\neg S_{G, \varepsilon} \) is true”
Proof:
Suppose \(\text{PROVABLE}_F \) is decidable with TM \(P \).
Then we can decide \(A_{\text{TM}} \) using the following procedure:
On input \((M, w)\), run the TM \(P \) on input \(S_{M,w} \).
If \(P \) accepts, examine all possible proofs in \(F \).
If a proof of \(S_{M,w} \) is found then accept.
If a proof of \(\neg S_{M,w} \) is found then reject.
If \(P \) rejects, then reject.

Why does this work?
Parting thoughts:
If a formal mathematical system is consistent and interesting:
• True statements that cannot be proved (including the consistency of the system),
• Provable statements we cannot tell are provable.
What about statements with short proofs?