NP-Completeness, Cook-Levin Thm
Definition: A language B is NP-complete if:

1. $B \in \text{NP}$
2. Every A in NP is poly-time reducible to B
 That is, $A \leq_{p} B$
 When this is true, we say “B is NP-hard”

On homework, you will show
A language L is recognizable iff $L \leq_{m} A_{TM}$

A_{TM} is “complete for recognizable languages”:
A_{TM} is recognizable, and for all recognizable L, $L \leq_{m} A_{TM}$
Suppose \(L \) is NP-Complete...

If \(L \in P \), then \(P = NP \)

If \(L \notin P \), then \(P \neq NP \)
Suppose L is NP-Complete...

Then assuming the conjecture $P \neq NP$,

L is not decidable in n^k time, for every k
The Cook-Levin Theorem:
SAT and 3SAT are NP-complete

1. **3SAT ∈ NP**
 A satisfying assignment is a “proof” that a 3cnf formula is satisfiable

2. **3SAT is NP-hard**
 Every language in NP can be polynomial-time reduced to 3SAT (complex logical formula)

Corollary: 3SAT ∈ P if and only if P = NP
Theorem (Cook-Levin): \textbf{3SAT} is NP-complete

Proof Idea:

(1) \textbf{3SAT} \in NP (done)

(2) Every language \textbf{A} in NP is polynomial time reducible to \textbf{3SAT} (this is the challenge)

We give a poly-time reduction from \textbf{A} to \textbf{SAT}

The reduction converts a string \textbf{w} into a 3cnf formula \(\phi \) such that \(w \in A \) iff \(\phi \in 3\text{SAT} \)

For any \(A \in \text{NP} \), let \(N \) be a nondeterministic TM deciding \(A \) in \(n^k \) time

\(\phi \) will simulate \(N \) on \(w \)
Deterministic Computation

accept or reject

Nondeterministic Computation

accept

\[\exp(n^k) \]

\[n^k \]
Let $L(N) \in \text{NTIME}(n^k)$. A tableau for N on w is an $n^k \times n^k$ table whose rows are the configurations of some possible computation history of N on w.

Each "cell" contains a $\sigma \in Q \cup \Gamma \cup \{\#\}$
A tableau is accepting if the last row of the tableau is an accepting configuration

\[N \text{ accepts } w \text{ if and only if there is an accepting tableau for } N \text{ on } w \]

Given \(w \), we’ll construct a 3cnf formula \(\phi \) with \(O(|w|^{2k}) \) clauses, describing logical constraints that any accepting tableau for \(N \) on \(w \) must satisfy

The 3cnf formula \(\phi \) will be satisfiable if and only if there is an accepting tableau for \(N \) on \(w \)
Variables of formula ϕ will \textit{encode} a tableau

Let $C = Q \cup \Gamma \cup \{\#\}$

Each of the $(n^k)^2$ entries of a tableau is a cell containing value in C

$\text{cell}[i,j] = \text{value of the cell at row } i \text{ and column } j$

$= \text{the } j\text{th symbol in the } i\text{th configuration}$

For every i and j ($1 \leq i, j \leq n^k$) and for every $s \in C$ we have a Boolean variable $x_{i,j,s}$ in ϕ

Total number of variables $= |C|n^{2k}$, which is $O(n^{2k})$

These $x_{i,j,s}$ are the variables of ϕ and represent the contents of the cells

We will have: for all i,j,s, $x_{i,j,s} = 1 \iff \text{cell}[i,j] = s$
Idea: Make ϕ so that every *satisfying assignment* to the variables $x_{i,j,s}$ corresponds to an *accepting tableau* for N on w (an assignment to all $\text{cell}[i,j]$’s of the tableau)

The formula ϕ will be the AND of four CNF formulas:

$$\phi = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{accept}} \land \phi_{\text{move}}$$

ϕ_{cell}: for all i, j, there is a unique $s \in C$ with $x_{i,j,s} = 1$

ϕ_{start}: the first row of the table equals the *start* configuration of N on w

ϕ_{accept}: the last row of the table has an accept state

ϕ_{move}: every row is a configuration that yields the configuration on the next row
\(\phi_{\text{cell}} \): for all \(i, j \), there is a unique \(s \in C \) with \(x_{i,j,s} = 1 \)

\[
\phi_{\text{cell}} = \bigwedge_{1 \leq i, j \leq n^k} \left[\bigvee_{s \in C} x_{i,j,s} \right] \land \left[\bigwedge_{s,t \in C, s \neq t} (\neg x_{i,j,s} \lor \neg x_{i,j,t}) \right]
\]

for all \(i, j \) \at least one \(x_{i,j,s} \) is set to 1

at most one \(x_{i,j,s} \) is set to 1
ϕ_{start}: the first row of the table equals the start configuration of N on w

$\phi_{start} = X_{1,1,#} \wedge X_{1,2,q_0} \wedge$

$X_{1,3,w_1} \wedge X_{1,4,w_2} \wedge \ldots \wedge X_{1,n+2,w_n} \wedge$

$X_{1,n+3,\square} \wedge \ldots \wedge X_{1,n^{k-1},\square} \wedge X_{1,n^k,\#}$

<table>
<thead>
<tr>
<th></th>
<th>q₀</th>
<th>w₁</th>
<th>w₂</th>
<th>...</th>
<th>wₙ</th>
<th>□</th>
<th>...</th>
<th>□</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\phi_{\text{accept}} : \text{the last row of the table has an accept state} \]

\[\phi_{\text{accept}} = \bigvee_{1 \leq j \leq n^k} x_{n^k,j, q_{\text{accept}}} \]
ϕ_{move} : every row is a configuration that yields the configuration on the next row

Key Question: If one row yields the next row, how many cells can be different between the two rows?

Answer: at most three cells
$$\phi_{\text{move}} : \text{every row is a configuration that yields the configuration on the next row}$$

Idea: check that every 2×3 “window” of cells is legal (consistent with the transition function of N)
Example: Let $N = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$

Suppose $a, b, c \in \Gamma$, $q_1, q_2 \in Q$ and

$\delta(q_1, a) = \{(q_1, b, R)\}$
$\delta(q_1, b) = \{(q_2, c, L), (q_2, a, R)\}$

Legal = Consistent with N’s transition function

Illegal = Inconsistent with N’s transition function
Key Lemma:
IF Every window of the tableau is legal, and
The top row is the start configuration
THEN Each row of the tableau is a configuration that yields the next row on the tableau

Proof Sketch: (Strong) induction on the rows.
The top row is a configuration. If it does not yield the next row, then there is a 2×3 window that is “illegal”
Suppose the first 1,...,k rows are configurations which yield the next, and assume every window is legal.
If row $k+1$ did not yield row $k+2$, then there must be a 2×3 window along those two rows which is “illegal” – contradiction.
The \((i, j)\) window of a tableau is the tuple \((a_1, ..., a_6) \in \mathbb{C}^6\) such that:
\[\phi_{\text{move}} : \text{every row is a configuration that legally follows from the previous configuration} \]

\[\phi_{\text{move}} = \bigwedge (\text{the (i, j) window is legal}) \]

\[1 \leq i \leq n^k - 1 \]
\[1 \leq j \leq n^k - 2 \]

\[(\text{the (i, j) window is legal}) = \]

\[\bigvee (a_1, \ldots, a_6) \text{ is a legal window} \]

\[(x_{i,j,a_1} \land x_{i,j+1,a_2} \land x_{i,j+2,a_3} \land x_{i+1,j,a_4} \land x_{i+1,j+1,a_5} \land x_{i+1,j+2,a_6}) \]

\[\equiv \bigwedge (a_1, \ldots, a_6) \text{ is NOT a legal window} \]

\[(x_{i,j,a_1} \lor x_{i,j+1,a_2} \lor x_{i,j+2,a_3} \lor x_{i+1,j,a_4} \lor x_{i+1,j+1,a_5} \lor x_{i+1,j+2,a_6}) \]
How do we get 3SAT?

We had some long clauses in there... how do we convert the whole thing into a 3-cnf formula?

Everything was an AND of ORs (a CNF). We just need to make those ORs small

\[(a_1 \lor a_2 \lor \ldots \lor a_t) \text{ is equivalent to } (a_1 \lor a_2 \lor z_1) \land (\neg z_1 \lor a_3 \lor z_2) \land (\neg z_2 \lor a_4 \lor z_3) \ldots \land (\neg z_{t-3} \lor a_{t-1} \lor a_t)\]

\((\text{SAT is polynomial time reducible to 3SAT})\)
What’s the total length of ϕ?

$$\phi = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{accept}} \land \phi_{\text{move}}$$

$O(n^{2k})$ clauses $O(n^k)$ clauses $O(n^k)$ clauses $O(n^{2k})$ clauses
Summary. We wanted to prove: Every A in NP has a polynomial time reduction to 3SAT

For every A in NP, we know A is decided by some nondeterministic n^k-time Turing machine N

We gave a generic method to reduce (N, w) to a 3CNF formula ϕ of $O(|w|^{2k})$ clauses such that satisfying assignments to the variables of ϕ directly correspond to accepting computation histories of N on w

The formula ϕ is the AND of four 3CNF formulas:

$\phi = \phi_{cell} \land \phi_{start} \land \phi_{accept} \land \phi_{move}$
Reading Assignment

Read Luca Trevisan’s notes for an alternative proof of the Cook-Levin Theorem

Sketch:
1. Define CIRCUIT-SAT: Given a logical circuit $C(y)$, is there an input a such that $C(a) = 1$?
2. Show that CIRCUIT-SAT is NP-hard:
 The $n^k \times n^k$ tableau for N on w can be simulated using a logical circuit of $O(n^{2k})$ gates
3. Reduce CIRCUIT-SAT to 3SAT in polytime
4. Conclude 3SAT is also NP-hard
Theorem (Cook-Levin):
SAT and 3SAT are NP-complete

Corollary: SAT ∈ P if and only if P = NP
Is 3SAT solvable in $O(n)$ time on a multitape TM?

Are there logic circuits of size $6n$ for 3SAT?

If yes, then not only is $P=NP$, but there would be a “dream machine” that could crank out short proofs of theorems, quickly optimize all aspects of life...

recognizing quality work is all you need to produce
Parting thoughts:
Completeness – powerful tool to analyze a class
SAT – foot in the door. Anything other complete problem?
P vs. NP still widely open