Polynomial Time With Oracles
How to Think about Oracles?

Think in terms of Turing Machine pseudocode or a subroutine

An oracle Turing machine M with oracle $B \subseteq \Gamma^*$ lets you include the following kind of branching instructions:

“if (z in B) then <do something> else <do something else>”

where z is some string defined earlier in pseudocode.

By definition, the oracle TM can always check the condition (z in B) in one step.
Some Complexity Classes With Oracles

\[P^B = \{ L \mid L \text{ can be decided by some polynomial-time TM with an oracle for } B \} \]

\[P^{\text{SAT}} = \text{the class of languages decidable in polynomial time with an oracle for SAT} \]

\[P^{\text{NP}} = \text{the class of languages decidable by some polynomial-time oracle TM with an oracle for some } B \text{ in NP} \]
Is $P^{SAT} \subseteq P^{NP}$?

Yes. By definition...

Is $P^{NP} \subseteq P^{SAT}$?

Yes:

Every NP language can be reduced to SAT!

For every poly-time TM M with oracle $B \in NP$, we can simulate every query z to oracle B by reducing z to a formula ϕ in poly-time, then asking an oracle for SAT instead.
For every poly-time TM M with oracle $B \in P$, we can simulate every query z to oracle B by simply running a polynomial-time decider for B.

$P_B = \{ L \mid L$ can be decided by a polynomial-time TM with an oracle for $B \}$

Suppose B is in P.

Is $P_B \subseteq P$?

Yes

For every poly-time TM M with oracle $B \in P$, we can simulate every query z to oracle B by simply running a polynomial-time decider for B.

The resulting machine runs in polynomial time
Is $\text{NP} \subseteq \text{P}^{\text{NP}}$?

Yes

Just ask the oracle for the answer!

For every $L \in \text{NP}$ define an oracle TM M^L which asks the oracle if the input is in L.
Is $\text{coNP} \subseteq \text{P}^{\text{NP}}$?

Yes!

Again, just ask the oracle for the answer!

For every $L \in \text{coNP}$ we know $\neg L \in \text{NP}$

Define an oracle TM $M^{\neg L}$ which asks the oracle if the input is in $\neg L$

accept if the answer is no,

reject if the answer is yes

More generally, we have $\text{P}^{\text{NP}} = \text{P}^{\text{coNP}}$
NP^B = \{ L \mid L \text{ can be decided by a polynomial-time nondeterministic TM with an oracle for } B \} \\
coNP^B = \{ L \mid L \text{ can be decided by a poly-time co-nondeterministic TM with an oracle for } B \} \\
Is \, NP = NP^{NP}?

Is coNP^{NP} = NP^{NP}?

It is believed that the answers are NO
Logic Minimization is in coNP^{NP}

Two Boolean formulas ϕ and ψ over the variables x_1, \ldots, x_n are equivalent if they have the same value on every assignment to the variables

Are x and $x \lor x$ equivalent? Yes

Are x and $x \lor \neg x$ equivalent? No

Are $(x \lor \neg y) \land \neg(\neg x \land y)$ and $x \lor \neg y$ equivalent? Yes

A Boolean formula ϕ is minimal if no smaller formula is equivalent to ϕ

$\text{MIN\text{-}FORMULA} = \{\phi \mid \phi \text{ is minimal}\}$
Theorem: \(\text{MIN-FORMULA} \in \text{coNP}^{\text{NP}} \)

Proof:
Define \(\text{NEQUIV} = \{(\phi, \psi)|\phi \text{ and } \psi \text{ are not equivalent}\} \)

Observation: \(\text{NEQUIV} \in \text{NP} \) (Why?)

Here is a \(\text{coNP}^{\text{NEQUIV}} \) machine for \(\text{MIN-FORMULA} \):

Given a formula \(\phi \),

*Try all formulas \(\psi \) smaller than \(\phi \):
 If \((\phi, \psi) \in \text{NEQUIV}\) then accept else reject*

\(\text{MIN-FORMULA} \) is not known to be in \(\text{coNP} \)
Decidable

coNP

MIN-FORMULA

NP

TAUT

FACTORIZATION

P

SAT

Undecidable

Undecidable
Parting thoughts:
We discussed the first levels of the polynomial hierarchy. Contain many interesting computational problems. Much we don’t know.