Advanced Topics on Proofs
Coping with NP-Completeness

There are thousands of NP-complete problems

Many are solved all the time !?!

Average Case vs. Worst Case; [Beyond Worst-Case Analysis (CS264)] Heuristics vs. Algorithms – SAT Solvers

Special cases/parameters that make a problem easy – Subset Sum with small target, 2SAT, ...

Approximation Algorithms
The Vertex Cover Problem - NP-Complete

vertex cover = set of nodes C that cover all edges:
For all edges, at least one endpoint is in C
Approximating Vertex Cover

Minimization problem: find the smallest VC

A very simple (greedy) approximation algorithm A: finds a VC that is at most twice as large as the optimal (a 2-approximation).

Algorithm: Set $C=\emptyset$ and while there exist uncovered edge e, add both endpoints of such e to C

Why does it work?
MAX-SAT

Max-SAT = given a cnf formula how many clauses can be satisfied? A maximization problem: satisfy the most clauses

Can always satisfy a constant fraction of all the clauses. Specifically: When all clauses have at least 3 unique literals, can satisfy at least 7/8 of all clauses (how?) \[\geq \frac{7}{8}\] of clauses of clauses in optimal solution (\[\Rightarrow\] a 7/8-approximation).

Can we approximate MAX-SAT up to any constant < 1? Can we solve Max-3SAT with \((7/8+\text{eps})\)-approximation?

Not if \(P \neq NP\)

For other problems no constant-approximation is likely - (clique \(n^{1-\text{eps}}\))
The PCP Theorem

For some constant $\alpha > 0$ and for every language $L \in \text{NP}$, there exists a polynomial-time computable function f that maps every input x into a 3cnf formula $f(x)$ s.t.

- If $x \in L$ then $f(x) \in \text{SAT}$
- If $x \notin L$ then no assignment satisfies more than $(1 - \alpha)$ fraction of $f(x)$ clauses.

\Rightarrow sufficiently good approximation of MAX-SAT implies P=NP (for tight inapproximability need better PCP theorem)
Hardness of Approximation

A rich literature giving exceedingly sophisticated approximation algorithms and exceedingly sophisticated inapproximability results

Know the best approximation factors for a wide range of problems (especially those where the algorithms are simple)

Inapproximability results via stronger PCPs and via approximation-preserving reductions

3SAT \leq_p CLIQUE is (very) approximation-preserving; why?
IS \leq_p VERTEX-COVER is completely not; why?
\[(x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)\]

Approx MAX-Clique \Rightarrow Approx MAX-SAT

\(|V| = 9\) \quad \text{and} \quad \(k = 3\)

MAX-Clique = MAX-SAT
Claim: For every graph $G = (V,E)$, and subset $S \subseteq V$, S is an independent set if and only if $(V - S)$ is a vertex cover.

Therefore $(G,k) \in IS \iff (G,|V| - k) \in VERTEX-COVER$

Our polynomial time reduction: $f(G,k) := (G, |V| - k)$

Assume min VC is k ($k \ll n$) and max IS is $n-k$. c-approximation will give IS of size roughly n/c. Giving VC of size $n-n/c$ - No approximation guarantee for the VC.
PCPs = Probabilistically Checkable Proofs

Alternative (equivalent) statement of PCP Theorem (informal):

Every statement that has a polynomial-time verifiable proof has such a proof where the verifier only reads $O(1)$ bits of the proof such that

[perfect completeness]: if the statement is correct accept with Probability 1
[soundness]: if the statement is false reject with probability 0.99

Example of the power of randomness (probabilistically checkable)
What can we Prove?

Every problem in NP has a short and easy to verify proof

How about coNP? Can a prover P convince a verifier V that there is no k-clique?

How about PSPACE? Can P convince V that there is a winning strategy for white from a particular position?

Yes!! If we add interaction!
Interactive Proofs

PCPs add randomness to proofs, what if we also add interaction?

$$x \in L?$$

Prover P \hspace{5cm} Verifier V

Interactive Proofs can be used to prove membership in powerful (PSPACE) languages. For example: V knows a winning Chess strategy: $\text{IP} = \text{PSPACE}$
Graph Non-Isomorphism

A graph G and H are isomorphic if we can rename vertices of G to get H (the mapping is called isomorphism).

Graph Isomorphism $= \{ (G, H) \mid G$ and H are isomorphic $\}$
Graph Non-Isomorphism $= \{ (G, H) \mid G$ and H are not isomorphic $\}$

Graph Isomorphism in NP but can we prove that G and H are not isomorphic?

We will see a simple interactive proof
Interactive Proof for Graph Non-Isomorphism

Prover P

Find c such that H and G_c are isomorphic

Verifier V

Select a bit b at random; Set H to be a random isomorphic copy of G_b

Accept iff $c = b$

[perfect completeness]: if G_0, G_1 are not isomorphic V accept with Probability 1

[soundness]: if G_0, G_1 are isomorphic V accept with Probability $\frac{1}{2}$ (no matter what P does)
Zero-Knowledge (Interactive) Proofs

$x \in L$?

Verifier V

Accept/Reject

Prover P

Zero-Knowledge Proofs – reveal no information apart of $x \in L$

ZK proofs for all of IP (PSPACE)
ZK IP for Non-Isomorphism (for semi-honest verifier)

Prover P

Verifier V

G_0, G_1

Select a bit b at random; Set H to be a random isomorphic copy of G_b

Find c such that H and G_c are isomorphic

Accept iff $c = b$

[perfect completeness]: if G_0, G_1 are not isomorphic V accept with Probability 1
[soundness]: if G_0, G_1 are isomorphic V accept with Probability $\frac{1}{2}$ (no matter what P does)
Where is Waldo?
Parting thoughts:
Computational perspective of proofs bare beautiful fruits